Радиолокационный контроль воздушного пространства. Зарубежные многопозиционные радиолокационные системы скрытного контроля воздушного пространства

ВОЕННАЯ МЫСЛЬ № 3(5-6)/1997

О некоторых проблемах контроля за соблюдением порядка использования воздушного пространства

Генерал-полковник В.Ф.МИГУНОВ,

кандидат военных наук

Полковник А.А.ГОРЯЧЕВ

ГОСУДАРСТВУ принадлежит полный и исключительный суверенитет в отношении воздушного пространства над его территорией и территориальными водами. Использование воздушного пространства Российской Федерации регламентируется законами, согласующимися с международными нормами, а также нормативно-правовыми документами Правительства и отдельных ведомств в пределах их компетенции.

Для организации рационального использования воздушного пространства страны, управления воздушным движением, обеспечения безопасности полетов, контроля за соблюдением порядка его использования создана Единая система управления воздушным движением (ЕС УВД). Соединения и части Войск противовоздушной обороны как пользователи воздушного пространства входят в состав объектов управления этой системы и в своей деятельности руководствуются едиными для всех нормативно-правовыми документами. В то же время готовность к отражению внезапного нападения воздушного противника обеспечивается не только непрерывным изучением расчетами командных пунктов Войск ПВО складывающейся обстановки, но и осуществлением контроля за порядком использования воздушного пространства. Правомерен вопрос: нет ли здесь дублирования функций?

Исторически сложилось так, что в нашей стране радиолокационные системы ЕС УВД и Войск ПВО возникли и развивались в большой степени независимо одна от другой. В ряду причин этого - различия в потребностях обороны и народного хозяйства, объемах их финансирования, значительные размеры территории, ведомственная разобщенность.

Данные о воздушной обстановке в системе УВД используются для выработки команд, передаваемых на борт воздушных судов и обеспечивающих их безопасный полет по заранее запланированному маршруту. В системе ПВО они служат для выявления летательных аппаратов, нарушивших государственную границу, управления войсками (силами), предназначенными для уничтожения воздушного противника, наведения средств поражения и радиоэлектронной борьбы на воздушные цели.

Поэтому принципы построения указанных систем, а следовательно, и их возможности значительно различаются. Существенно то, что позиции радиолокационных средств ЕС УВД располагаются вдоль воздушных трасс и в районах аэродромов, создавая поле управления с высотой нижней границы около 3000 м. Радиотехнические подразделения ПВО размещены прежде всего вдоль государственной границы, а нижняя кромка создаваемого ими радиолокационного поля не превышает минимальную высоту полета летательных аппаратов потенциального противника.

Система контроля Войск ПВО за порядком использования воздушного пространства сложилась в 60-е годы. Ее базу составляют радиотехнические войска ПВО, разведывательно-информационные центры (РИЦ) КП соединений, объединений и Центрального командного пункта Войск ПВО. В процессе контроля решаются следующие задачи: обеспечение КП частей, соединений и объединений ПВО данными о воздушной обстановке в их зонах ответственности; своевременное выявление летательных аппаратов, принадлежность которых не установлена, а также иностранных воздушных судов-нарушителей государственной границы; выявление летательных аппаратов, нарушающих порядок использования воздушного пространства; обеспечение безопасности полетов авиации ПВО; содействие органам ЕС УВД в оказании помощи воздушным судам, оказавшимся в форс-мажорных обстоятельствах, а также поисково-спасательным службам.

Слежение за порядком использования воздушного пространства осуществляется на основе радиолокационного и диспетчерского контроля: радиолокационный заключается в сопровождении воздушных судов, установлении их государственной принадлежности и других характеристик с помощью радиолокационных средств; диспетчерский - в определении расчетного местоположения воздушных судов на основе плана (заявок на полеты, расписаний движения) и сообщений о фактических полетах, . поступающих на командные пункты Войск ПВО от органов ЕС УВД и ведомственных пунктов управления в соответствии с требованиями Положения о порядке использования воздушного пространства.

При наличии данных радиолокационного и диспетчерского контроля по воздушному судну производится их отождествление, т.е. устанавливается однозначная связь между информацией, полученной инструментальным способом (координаты, параметры движения, данные радиолокационного опознавания), и сведениями, содержащимися в извещении о полете данного объекта (номер рейса или заявки, бортовой номер, исходный, промежуточные и конечный пункты маршрута и др.). В случае если не удалось отождествить радиолокационную информацию с планово-диспетчерской, то обнаруженное воздушное судно классифицируется как нарушитель порядка использования воздушного пространства, данные о нем немедленно передаются взаимодействующему органу УВД и принимаются адекватные обстановке меры. При отсутствии связи с нарушителем или когда командир воздушного судна не выполняет распоряжения диспетчера, истребители ПВО осуществляют его перехват и сопровождение до назначенного аэродрома.

В числе проблем, оказывающих наиболее сильное влияние на качество функционирования системы контроля, следует в первую очередь назвать недостаточную разработанность нормативно-правовой базы, регламентирующей использование воздушного пространства. Так, неоправданно затянулся процесс определения статуса границы России с Белоруссией, Украиной, Грузией, Азербайджаном и Казахстаном в воздушном пространстве и порядка контроля за ее пересечением. В результате возникшей неопределенности выяснение принадлежности воздушного судна, осуществляющего полет со стороны указанных государств, заканчивается тогда, когда оно находится уже в глубине территории России. При этом в соответствии с действующими инструкциями часть дежурных сил ПВО приводится в готовность №1, включаются в работу дополнительные силы и средства, т.е. неоправданно расходуются материальные ресурсы и создается излишняя психологическая напряженность у лиц боевых расчетов, чреватая самыми серьезными последствиями. Частично данная проблема решается в результате организации совместного боевого дежурства с силами ПВО Белоруссии и Казахстана. Однако полное ее решение возможно только при замене действующего Положения о порядке использования воздушного пространства новым, учитывающим сложившуюся ситуацию.

С начала 90-х годов условия выполнения задачи контроля за порядком использования воздушного пространства неуклонно ухудшаются. Это обусловлено сокращением численности радиотехнических войск и, как следствие, количества подразделений, причем в первую очередь были расформированы те из них, содержание и обеспечение боевого дежурства которых требовало больших материальных затрат. Но именно эти подразделения, располагавшиеся на морском побережье, на островах, сопках и в горах, имели наибольшую тактическую значимость. Кроме того, недостаточный уровень материального обеспечения привел к тому, что оставшиеся подразделения значительно чаще, чем раньше, теряют боеспособность из-за отсутствия горючего, запасных частей и др. В результате возможности РТВ по осуществлению радиолокационного контроля на малых высотах вдоль границ России значительно снизились.

В последние годы заметно уменьшилось количество аэродромов (посадочных площадок), имеющих прямую связь с ближайшими к ним командными пунктами Войск ПВО. Поэтому сообщения о фактических полетах поступают по обходным каналам связи с большими задержками или не поступают вовсе, что резко снижает достоверность диспетчерского контроля, затрудняет отождествление радиолокационной и планово-диспетчерской информации, не позволяет эффективно использовать средства автоматизации.

Дополнительные проблемы возникли в связи с образованием многочисленных авиапредприятий и появлением авиационной техники в частной собственности отдельных лиц. Известны факты, когда полеты выполняются не только без извещения Войск ПВО, но и без разрешения органов УВД. На региональном уровне существует разобщенность предприятий в вопросах использования воздушного пространства. Коммерционализация деятельности авиапредприятий сказывается даже на представлении ими расписаний движения воздушных судов. Типичной стала ситуация, когда они требуют их оплаты, а войска не располагают средствами для этих целей. Проблема решается путем изготовления неофициальных выписок, которые своевременно не обновляются. Естественно, снижается качество контроля за соблюдением установленного порядка использования воздушного пространства.

Определенное влияние на качество функционирования системы контроля оказали изменения в структуре воздушного движения. В настоящее время наблюдается тенденция роста международных рейсов и полетов вне расписаний, а следовательно, и загруженности соответствующих линий связи. Если учесть, что основным оконечным устройством каналов связи на КП ПВО являются устаревшие телеграфные аппараты, то становится очевидным, почему резко возросло количество ошибок при приеме извещений о планируемых полетах, сообщений о вылетах и др.

Предполагается, что перечисленные проблемы частично будут решены по мере развития Федеральной системы разведки и контроля воздушного пространства, и особенно при переходе к Единой автоматизированной радиолокационной системе (ЕАРЛС). В результате объединения ведомственных радиолокационных систем впервые появится возможность использовать общую информационную модель воздушного движения всеми органами, подключенными к ЕАРЛС в качестве потребителей данных о воздушной обстановке, в том числе командными пунктами Войск ПВО, ПВО Сухопутных войск, ВВС, ВМФ, центрами ЕС УВД, другими ведомственными пунктами управления воздушным движением.

В процессе теоретической проработки вариантов применения ЕАРЛС возник вопрос о целесообразности и в дальнейшем возлагать на Войска ПВО задачу контроля за порядком использования воздушного пространства. Ведь органы ЕС УВД будут иметь ту же информацию о воздушной обстановке, что и расчеты командных пунктов Войск ПВО, и на первый взгляд достаточно контроль осуществлять только силами центров ЕС УВД, которые, имея непосредственную связь с воздушными судами, способны быстрее разобраться в обстановке. В этом случае отпадает необходимость в передаче на командные пункты Войск ПВО большого объема планово-диспетчерской информации и дальнейшем отождествлении ими радиолокационной информации и расчетных данных о местоположении воздушных судов.

Однако Войска ПВО, находясь на страже воздушных рубежей государства, в вопросе выявления воздушных судов - нарушителей государственной границы не могут полагаться исключительно на ЕС УВД. Параллельное решение этой задачи на командных пунктах Войск ПВО и в центрах ЕС УВД сводит к минимуму вероятность ошибки и обеспечивает устойчивость системы контроля при переходе с мирного положения на военное.

Имеется и другой довод в пользу сохранения существующего порядка на длительную перспективу: дисциплинирующее влияние системы контроля Войск ПВО на органы ЕС УВД. Дело в том, что суточный план полетов отслеживается не только зональным центром ЕС УВД, но и расчетом группы контроля соответствующего командного пункта Войск ПВО. Это касается и многих других вопросов, связанных с полетами воздушных судов. Такая организация способствует оперативному выявлению нарушений порядка использования воздушного пространства и их своевременному устранению. Трудно дать количественную оценку влиянию системы контроля Войск ПВО на безопасность полетов, но практика свидетельствует о прямой связи между надежностью контроля и уровнем безопасности.

В процессе реформирования Вооруженных Сил объективно существует опасность разрушения созданных ранее и достаточно отлаженных систем. Проблемы, рассмотренные в статье, весьма специфичны, однако они тесно связаны с такими крупными государственными задачами, как охрана границ и организация воздушного движения, которые будут актуальны и в обозримом будущем. Поэтому сохранение боеспособности радиотехнических войск, составляющих основу Федеральной системы разведки и контроля воздушного пространства, должно быть проблемой не только Войск ПВО, но и других заинтересованных ведомств.

Для комментирования необходимо зарегистрироваться на сайте

BC / NW 2015 № 2 (27): 13 . 2

КОНТРОЛЬ ВОЗДУШНОГО ПРОСТРАНСТВА ЧЕРЕЗ КОСМОС

Климов Ф.Н., Кочев М. Ю., Гарькин Е.В., Луньков А.П.

Высокоточные средства воздушного нападения, такие как крылатые ракеты и беспилотные ударные самолёты, в процессе своего совершенствования стали обладать большой дальностью от 1500 до 5000 километров. Малозаметность таких целей во время полёта требует их обнаружения и идентификации на траектории разгона. Зафиксировать такую цель на большом расстоянии возможно, либо загоризонтными радиолокационными станциями (ЗГ РЛС), либо с помощью локационных или оптических систем спутникового базирования.

Ударные беспилотные самолёты и крылатые ракеты летают чаще всего со скоростями близкими к скоростям пассажирских воздушных судов, следовательно, нападение такими средствами может быть замаскировано под обычное воздушное движение. Это ставит перед системами контроля воздушного пространства задачу выявления и идентификации таких средств нападения от момента пуска и на максимальной дальности от рубежей эффективного поражения их средствами ВКС. Для решения данной задачи необходимо применять все имеющиеся и разрабатываемые системы контроля и наблюдения за воздушным пространством, в том числе загоризонтные РЛС и спутниковые группировки.

Запуск крылатой ракеты или ударного беспилотного самолёта может быть осуществлён из торпедного аппарата сторожевого катера, с внешней подвески самолёта или с пусковой установки замаскированной под стандартный морской контейнер, расположенный на гражданском сухогрузе, автомобильном прицепе, железнодорожной платформе. Спутники системы предупреждения о ракетном нападении уже сегодня фиксируют и отслеживают координаты запусков беспилотных самолётов или крылатых ракет в горах и в океане по факелу двигателя на участке разгона. Следовательно, спутникам системы предупреждения о ракетном нападении необходимо отслеживать не только территорию вероятного противника, но и акваторию океанов и материков глобально.

Размещение радиолокационных систем на спутниках, для контроля воздушно-космического пространства сопряжено сегодня с трудностями технологического и финансового характера. Но в современных условиях такая новая технология как вещательное автоматическое зависимое наблюдение (АЗН-В) может быть использована для контроля воздушного пространства через спутники. Информацию с коммерческих воздушных судов по системе АЗН-В можно собирать с помощью спутников, разместив на их борту приёмники, работающие на частотах АЗН-В и ретрансляторы полученной информации на наземные центры контроля воздушного пространства. Таким образом, есть возможность создать глобальное поле электронного наблюдения за воздушным пространством планеты. Спутниковые группировки могут стать источниками полётной информации о воздушных судах на достаточно больших территориях.

Информация о воздушном пространстве, приходящая от приёмников системы АЗН-В расположенных на спутниках, даёт возможность контролировать воздушные суда над океанами и в складках местности горных массивов континентов. Эта информация позволит нам выделять средства воздушного нападения из потока коммерческих воздушных судов с последующей их идентификацией.

Идентификационная информация АЗН-В о коммерческих воздушных судах, поступающая через спутники, создаст возможность снизить риски терактов и диверсий в наше время. Кроме того такая информация даст возможность обнаруживать аварийные воздушные суда и места авиационных катастроф в океане вдали от берегов.

Оценим возможность применения различных спутниковых систем для приёма полётной информации самолётов по системе АЗН-В и ретрансляции данной информации на наземные комплексы контроля воздушного пространства. Современные воздушные суда передают полётную информацию по системе АЗН-В с помощью бортовых транспондеров мощностью 20 Вт на частоте 1090 МГц.

Система АЗН-В работает на частотах, которые свободно проникают через ионосферу Земли. Передатчики системы АЗН-В, расположенные на борту воздушных судов имеют ограниченную мощность, следовательно, приёмники, расположенные на борту спутников должны иметь достаточную чувствительность.

Используя энергетический расчёт спутниковой линии связи Самолёт-Спутник, мы можем оценить максимальную дальность, на которой возможен приём информации спутником с воздушных судов. Особенность используемой спутниковой линии это ограничения на массу, габаритные размеры и энергопотребление, как бортового транспондера самолёта, так и бортового ретранслятора спутника.

Для определения максимальной дальности, на которой возможен приём спутником АЗН-В сообщений, воспользуемся известным уравнением для линии спутниковых систем связи на участке земля – ИСЗ:

где

– эффективная мощность сигнала на выходе передатчика ;

– эффективная мощность сигнала на входе приемника;

– коэффициент усиления передающей антенны;

– наклонная дальность от КА до приёмной ЗС;

–длина волны на линии «ВНИЗ»

волны на линии «Вниз»;

– эффективная площадь апертуры передающей антенны;

– коэффициент передачи волноводного тракта между передатчиком и антенной КА;

– КПД волноводного тракта между приёмником и антенной ЗС;

Преобразуя формулу – находим наклонную дальность, на которой возможен приём спутником полётной информации:

d = .

Подставляем в формулу параметры соответствующие стандартному бортовому транспондеру и приёмному стволу спутника. Как показывают расчёты, максимальная дальность передачи на линии самолёт-спутник равна 2256 км. Такая наклонная дальность передачи на линии самолёт-спутник возможна только при работе через низкоорбитальные группировки спутников. При этом, мы используем стандартное бортовое оборудование воздушных судов, не усложняя требования к коммерческим летательным аппаратам.

Наземная станция приёма информации имеет значительно меньшие ограничения по массе и габаритам чем бортовая аппаратура спутников и самолётов. Такая стация может быть оснащена более чувствительными приёмными устройствами и антеннами с высоким коэффициентом усиления. Следовательно, дальность связи на линии спутник-земля зависит только от условий прямой видимости спутника.

Используя данные орбит спутниковых группировок, мы можем оценить максимальную наклонную дальность связи между спутником и наземной станцией приёма по формуле:

,

где Н–высота орбиты спутника;

– радиус Земной поверхности.

Результаты расчётов максимальной наклонной дальности для точек на различных географических широтах представлены в таблице 1.

Орбком

Иридиум

Гонец

Глобалстар

Сигнал

Высота орбиты, км

1400

1414

1500

Радиус Земли северный полюс, км

6356,86

2994,51

3244,24

4445,13

4469,52

4617,42

Радиус Земли северный полярный круг, км

6365,53

2996,45

3246,33

4447,86

4472,26

4620,24

Радиус Земли 80°, км

6360,56

2995,34

3245,13

4446,30

4470,69

4618,62

Радиус Земли 70°, км

6364,15

2996,14

3245,99

4447,43

4471,82

4619,79

Радиус Земли 60°, км

6367,53

2996,90

3246,81

4448,49

4472,89

4620,89

Радиус Земли 50°, км

6370,57

2997,58

3247,54

4449,45

4473,85

4621,87

Радиус Земли 40°, км

6383,87

3000,55

3250,73

4453,63

4478,06

4626,19

Радиус Земли 30°, км

6375,34

2998,64

3248,68

4450,95

4475,36

4623,42

Радиус Земли 20°, км

6376,91

2998,99

3249,06

4451,44

4475,86

4623,93

Радиус Земли 10°, км

6377,87

2999,21

3249,29

4451,75

4476,16

4624,24

Радиус Земли экватор, км

6378,2

2999,28

3249,37

4451,85

4476,26

4624,35

Максимальная дальность передачи на линии самолёт-спутник меньше чем максимальная наклонная дальность на линии спутник-земля у спутниковых систем Орбком, Иридиум и Гонец. Наиболее близка максимальная наклонная дальность данные к рассчитанной максимальной дальности передачи данных у спутниковой системы Орбком.

Расчёты показывают, что возможно создать систему наблюдения за воздушным пространством, использующую спутниковую ретрансляцию АЗН-В сообщений с воздушных судов на наземные центры обобщения полётной информации. Такая система наблюдения позволит увеличить дальность контролируемого пространства с наземного пункта до 4500 километров без использования межспутниковой связи, что обеспечит увеличение зоны контроля воздушного пространства. При использовании каналов межспутниковой связи мы сможем контролировать воздушное пространство глобально.


Рис.1 «Контроль воздушного пространства с помощью спутников»


Рис.2 «Контроль воздушного пространства с межспутниковой связью»

Предлагаемый метод контроля воздушного пространства позволяет:

Расширить зону действия системы контроля воздушного пространства, в том числе на акваторию океанов и территорию горных массивов до 4500 км от приёмной наземной стации;

При использовании межспутниковой системы связи, контролировать воздушное пространство Земли возможно глобально;

Получать полётную информацию от воздушных судов независимо от зарубежных систем наблюдения воздушного пространства;

Селектировать воздушные объекты, отслеживаемые ЗГ РЛС по степени их опасности на дальних рубежах обнаружения.

Литература:

1. Федосов Е.А. «Полвека в авиации». М: Дрофа, 2004.

2. «Спутниковая связь и вещание. Справочник. Под редакцией Л.Я.Кантора». М: Радио и связь, 1988.

3. Андреев В.И. «Приказ Федеральной службы воздушного транспорта РФ от 14 октября 1999г. № 80 «О создании и внедрении системы радиовещательного автоматического зависимого наблюдения в гражданской авиации России».

4. Трасковский А. «Авиационная миссия Москвы: базовый принцип безопасного управления». «Авиапанорама». 2008. №4.

Всем добрый вечер:) Шарил по просторам интернета после посещения войсковой части с немалым количеством РЛС.
Очень заинтересовали сами РЛС.Думаю что не только меня,поэтому решил выложить данную статью:)

Радиолокационные станции П-15 и П-19


Радиолокационная станция П-15 дециметрового диапазона предназначена для обнаружения низколетящих целей. Принята на вооружение в 1955 году. Используется в составе радиолокационных постов радиотехнических формирований, батареях управления зенитных артиллерийских и ракетных формирований оперативного звена ПВО и на пунктах управления ПВО тактического звена.

Станция П-15 смонтирована на одном автомобиле вместе с антенной системой и развертывается в боевое положение за 10 мин. Агрегат питания транспортируется в прицепе.

В станции имеются три режима работы:
- амплитудный;
- амплитудный с накоплением;
- когерентно-импульсный.

РЛС П-19 предназначена для ведения разведки воздушных целей на малых и средних высотах, обнаружения целей, определения их текущих координат по азимуту и дальности опознавания, а также для передачи Радиолокационной информации на командные пункты и на сопрягаемые системы. Она представляет собой подвижную двухкоординатную радиолокационную станцию, размещенную на двух автомобилях.

На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура передачи радиолокационной информации, имитации, связи и сопряжения с потребителями радиолокационной информации, функционального контроля и аппаратура наземного радиолокационного запросчика.

На втором автомобиле размещается антенно-поворотное устройство РЛС и агрегаты электропитания.

Сложные климатические условия и длительность эксплуатации радиолокационных станций П-15 и П-19 привели к тому, что к настоящему времени большая часть РЛС требует восстановления ресурса.

Единственным выходом из сложившейся ситуации считается модернизация старого парка РЛС на базе РЛС «Kacтa-2E1».

В предложениях по модернизации учитывалось следующее:

Сохранение в неприкосновенности основных систем РЛС (антенной системы, привода вращения антенны, СВЧ-тракта, системы электропитания, транспортных средств);

Возможность проведения модернизации в условиях эксплуатации с минимальными финансовыми затратами;

Возможность использования высвобождаемой аппаратуры РЛС П-19 для восстановления изделий, не подвергнутых модернизации.

В результате модернизации мобильная твердотельная маловысотная РЛС П-19 будет способна выполнять задачи контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно-пилотируемых летательных аппаратов и крылатых ракет, в том числе действующих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.

РЛС легко адаптируется к использованию в различных системах военного и гражданского назначения. Может применяться для информационного обеспечения систем ПВО, ВВС, систем береговой обороны, сил быстрого реагирования, систем управления движением самолетов гражданской авиации. Кроме традиционного применения в качестве средств обнаружения низколетящих целей в интересах вооруженных сил модернизированная РЛС может использоваться для контроля воздушного пространства с целью пресечения транспортировки оружия и наркотиков маловысотными, малоскоростными и малоразмерными летательными аппаратами в интересах специальных служб и подразделений полиции, занимающихся борьбой с наркобизнесом и контрабандой оружия.

Модернизированная радиолокационная станция П-18

Предназначена для обнаружения самолетов, определения их текущих координат и выдачи целеуказания. Является одной из самых массовых и дешевых станций метрового диапазона. Ресурс этих станций в значительной мере исчерпан, а их замена и ремонт затруднены в связи с отсутствием устаревшей к настоящему времени элементной базы.
Для продления срока службы РЛС П-18 и улучшения ряда тактико-технических характеристик осуществлена модернизация станции на основе монтажного комплекта, имеющего ресурс не менее 20-25 тыс. часов и срок службы 12 лет.
В антенную систему введены четыре дополнительных антенны для адаптивного подавления активных помех, устанавливаемые на двух отдельных мачтах, Цель модернизации - создание РЛС с ТТХ, удовлетворяющими современным требованиям, при сохранении облика базового изделия за счет:
- замены устаревшей элементной базы аппаратуры РЛС П-18 на современную;
- замены лампового передающего устройства твердотельным;
- введения системы обработки сигнала на цифровых процессорах;
- введения системы адаптивного подавления активных шумовых помех;
- введения систем вторичной обработки, контроля и диагностики аппаратуры, отображения информации и управления на базе универсальной ЭВМ;
- обеспечения сопряжения с современными АСУ.

В результате модернизации:
- уменьшен объем аппаратуры;
- увеличена надежность изделия;
- повышена помехозащищенность;
- улучшены точностные характеристики;
- улучшены эксплуатационные характеристики.
Монтажный комплект встраивается в аппаратную кабину РЛС вместо старой аппаратуры. Небольшие габариты монтажного комплекта позволяют проводить модернизацию изделий на позиции.

Радиолокационный комплекс П-40А


Дальномер 1РЛ128 «Броня»

Радиолокационный дальномер 1РЛ128 "Броня" является РЛС кругового обзора и совместно с радиолокационным высотомером 1РЛ132 образует трехкоординатный радиолокационный комплекс П-40А.
Дальномер 1РЛ128 предназначен для:
- обнаружения воздушных целей;
- определения наклонной дальности и азимута воздушных целей;
- автоматического вывода антенны высотомера на цель и отображения значения высоты цели по данным высотомера;
- определения госпринадлежности целей («свой - чужой»);
- управления своими самолетами с использованием индикатора кругового обзора и самолетной радиостанции Р-862;
- пеленгации постановщиков активных помех.

Радиолокационный комплекс входит в состав радиотехнических формировании и соединений ПВО, а также зенитных ракетных (артиллерийских) частей и соединений войсковой ПВО.
Конструктивно антенно-фидерная система, вся аппаратура и наземный радиолокационный запросчик размещены на самоходном гусеничном шасси 426У со своими комплектующими. Кроме того, на нем располагаются два газотурбинных агрегата питания.

Двухкоординатная РЛС дежурного режима "Небо-СВ"


Предназначена для обнаружения и опознавания воздушных целей в дежурном режиме при работе в составе радиолокационных подразделений войсковой ПВО, оснащенных и не оснащенных средствами автоматизации.
РЛС представляет собой подвижную когерентно-импульсную радиолокационную станцию, размещенную на четырех транспортных единицах (три автомобиля и прицеп).
На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура автосъема и передачи радиолокационной информации, имитации, связи и документирования, сопряжения с потребителями радиолокационной информации, функционального контроля и непрерывной диагностики, аппаратура наземного радиолокационного запросчика (НРЗ).
На втором автомобиле размещается антенно-поворотное устройство РЛС.
На третьем автомобиле - дизельная электростанция.
На прицепе размещается антенно-поворотное устройство НРЗ.
РЛС может доукомплектовываться двумя выносными индикаторами кругового обзора и кабелями сопряжения.

Мобильная трехкоординатная радиолокационная станция 9С18М1 «Купол»

Предназначена для обеспечения радиолокационной информацией командных пунктов зенитных ракетных соединений и частей войсковой ПВО и пунктов управления объектов системы ПВО мотострелковых и танковых дивизий, оснащенных ЗРК "Бук-М1-2" и "Тор-М1".

РЛС 9С18М1 представляет собой трехкоординатную когерентно-импульсную станцию обнаружения и целеуказания, использующую зондирующие импульсы большой длительности, что обеспечивает большую энергию излучаемых сигналов.

РЛС оснащена цифровой аппаратурой автоматического и полуавтоматического съема координат и аппаратурой опознавания обнаруженных целей. Весь процесс функционирования РЛС максимально автоматизирован благодаря применению быстродействующих вычислительных электронных средств. Для повышения эффективности работы в условиях активных и пассивных помех в РЛС используются современные методы и средства помехозащиты.

РЛС 9С18М1 размещается на гусеничном шасси высокой проходимости и оснащена системой автономного электроснабжения, аппаратурой навигации, ориентирования и топопривязки, средствами телекодовой и речевой радиосвязи. Кроме того, РЛС имеет встроенную систему автоматизированного функционального контроля, обеспечивающую быстрое отыскивание неисправного сменного элемента и тренажера для обработки навыков работы операторов. Для перевода их из походного положения в боевое и обратно используются устройства автоматического развертывания и свертывания станции.
РЛС может работать в жестких климатических условиях, перемещаться своим ходом по дорогам и бездорожью, а также перевозиться любым видом транспорта, включая воздушный.

ПВО ВВС
Радиолокационная станция "Оборона-14"



Предназначена для дальнего обнаружения и измерения дальности и азимута воздушных целей при работе в составе АСУ или автономно.

РЛС размещается на шести транспортных единицах (два полуприцепа с аппаратурой, два – с антенно-мачтовым устройством и два прицепа с системой энергоснабжения). На отдельном полуприцепе имеется выносной пост с двумя индикаторами. Он может быть удален от станции на расстояние до 1 км. Для опознавания воздушных целей РЛС комплектуется наземным радиозапросчиком.

В станции применена складывающаяся конструкция антенной системы, позволившая существенно сократить время ее развертывания. Защита от активных шумовых помех обеспечивается перестройкой рабочей частоты и трехканальной системой автокомпенсации, позволяющей автоматически формировать "нули" в диаграмме направленности антенны в направлении на постановщиков помех. Для защиты от пассивных помех применена когерентно-компенсационная аппаратура на потенциалоскопических трубках.

В станции предусмотрены три режима обзора пространства:

- "нижний луч" - с увеличенной дальностью обнаружения целей на малых и средних высотах;

- "верхний луч" - с увеличенной верхней границей зоны обнаружения по углу места;

Сканирования - с поочередным (через обзор) включением верхнего и нижнего лучей.

Станция может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 30 м/с. Многие из этих станций поставлены на экспорт и до сих пор эксплуатируются в войсках.

РЛС "Оборона-14" может быть модернизирована на современной элементной базе с использованием твердотельных передатчиков и цифровой системы обработки информации. Разработанный монтажный комплект аппаратуры позволяет прямо на позиции у потребителя выполнить в короткий срок работы по модернизации РЛС, приблизить ее характеристики к характеристикам современных РЛС, и продлить срок эксплуатации на 12 - 15 лет при затратах в несколько раз меньших, чем при закупке новой станции.
Радиолокационная станция "Небо"


Предназначена для обнаружения, опознавания, измерения трех координат и сопровождения воздушных целей, включая самолеты, изготовленные по технологии "стелс". Применяется в войсках ПВО в составе АСУ или автономно.

РЛС кругового обзора "Небо" располагается на восьми транспортных единицах (на трех полуприцепах - антенно-мачтовое устройство, на двух - аппаратура, на трех прицепах - система автономного энергоснабжения). Имеется выносное устройство, транспортируемое в тарных ящиках.

РЛС работает в метровом диапазоне волн и совмещает функции дальномера и высотомера. В этом диапазоне радиоволн РЛС малоуязвима от снарядов самонаведения и противолокационных ракет, действующих в других диапазонах, а в рабочем диапазоне эти средства поражения в настоящее время отсутствуют. В вертикальной плоскости реализовано (без использования фазовращателей) электронное сканирование высотомерным лучом в каждом элементе разрешения по дальности.

Помехозащищенность в условиях воздействия активных помех обеспечивается адаптивной перестройкой рабочей частоты и многоканальной системой автокомпенсации. Система защиты от пассивных помех также построена на базе корреляционных автокомпенсаторов.

Впервые для обеспечения помехозащищенности в условиях воздействия комбинированных помех реализована пространственно-временная развязка систем защиты от активных и пассивных помех.

Измерение и выдача координат осуществляются с помощью аппаратуры автосъема на базе встроенного спецвычислителя. Имеется автоматизированная система контроля и диагностирования.

Передающее устройство отличается высокой надежностью, которая достигается за счет стопроцентного резервирования мощного усилителя и использования группового твердотельного модулятора.
РЛС "Небо" может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 35 м/с.
Трехкоординатная подвижная обзорная РЛС 1Л117М


Предназначена для наблюдения за воздушным пространством и определения трех координат (азимут, наклонная дальность, высота) воздушных целей. РЛС построена на современных компонентах, обладает высоким потенциалом и низким потреблением энергии. Кроме того, РЛС имеет встроенный запросчик госопознавания и аппаратуру для первичной и вторичной обработки данных, комплект выносного индикаторного оборудования, благодаря чему может быть использована в автоматизированных и неавтоматизированных системах ПВО и Военно-воздушных силах для управления полетами и наведения перехвата, а также для управления воздушным движением (УВД).

РЛС 1Л117М является усовершенствованной модификацией предыдущей модели 1Л117.

Основным отличием усовершенствованной РЛС является использование клистронного выходного усилителя мощности передатчика, что позволило повысить стабильность излучаемых сигналов и, соответственно, коэффициент подавления пассивных помех и улучшить характеристики по низколетящим целям.

Кроме того, благодаря наличию перестройки частоты улучшены характеристики при работе радара в условиях помех. В устройстве обработки радиолокационных данных применены новые типы сигнальных процессоров, усовершенствована система дистанционного управления, контроля и диагностики.

В основной комплект РЛС 1Л117М входят:

Машина № 1 (приемопередающая) состоит из: нижней и верхней антенных систем, четырехканального волноводного тракта с приемо-передающим оборудованием ПРЛ и аппаратурой госопознавания;

Машина № 2 имеет шкаф (пункт) съема и шкаф обработки информации, радиолокационный индикатор с дистанционным управлением;

Машина № 3 перевозит две дизельные электростанции (главную и резервную) и комплект кабелей РЛС;

Машины № 4 и № 5 содержат вспомогательное оборудование (запчасти, кабели, коннекторы, монтажный комплект и т.д.). Они используются также для транспортировки разобранной антенной системы.

Обзор пространства обеспечивается механическим вращением антенной системы, которая образует V-образную диаграмму на-правленности, состоящую из двух лучей, один из которых расположен в вертикальной плоскости, а другой - в плоскости, расположенной под углом 45 к вертикальной. Каждая диаграмма направленности в свою очередь формируется двумя лучами, образованными на разных несущих частотах и имеющими ортогональную поляризацию. Передатчик РЛС формирует два последовательных фазокодоманипулированных импульса на разных частотах, которые посылаются на облучатели вертикальной и наклонной антенн через волноводный тракт.
РЛС может работать в режиме редкой частоты повторения импульсов, обеспечивающей дальность 350 км, и в режиме частых посылок с максимальной Дальностью 150 км. При повышенной частоте вращения (12 оборотов в минуту) используется только частый режим.

Приемная система и цифровая аппаратура СДЦ обеспечивают прием и обработку эхосигналов цели на фоне естественных помех и метеообразований. РЛС обрабатывает эхо-сигналы в "движущемся окне" с фиксированным уровнем ложных тревог и имеет межобзорную обработку для улучшения обнаружения целей на фоне помех.

Аппаратура СДЦ имеет четыре независимых канала (по одному на каждый приемный канал), каждый из которых состоит из когерентной и амплитудной частей.

Выходные сигналы четырех каналов объединяются попарно, в результате чего на экстрактор РЛС подаются нормированные амплитудные и когерентные сигналы вертикального и наклонного лучей.

Шкаф съема и обработки информации получает данные от ПЛР и аппаратуры госопознавания, а также сигналы вращения и синхронизации, и обеспечивает: выбор амплитудного или когерентного канала в соответствии с информацией карты помех; вторичную обработку РЛИ с построением траекторий по данным РЛС, объединение отметок ПРЛ и аппаратуры госопознавания, отображение на экране воздушной обстановки с "привязанными" к целям формулярами; экстраполяцию местоположения цели и прогнозирование столкновений; введение и отображение графической информации; управление режимом опознавания; решение за-дач наведения (перехвата); анализ и отображение метеорологических данных; статистическую оценку работы РЛС; выработку и передачу обменных сообщений на пункты управления.
Система дистанционного контроля и управления обеспечивает автоматическое функционирование радара, управление режимами работы, выполняет автоматический функциональный и диагностический контроль технического состояния оборудования, определение и поиск неисправностей с отображением методики проведения ремонтных и эксплуатационных работ.
Система дистанционного контроля обеспечивает локализацию до 80 % неисправностей с точностью до типового элемента замены (ТЭЗ), в других случаях - до группы ТЭЗов. На экране дисплея рабочего места дается полное отображение характерных показателей технического состояния радиолокационного оборудования в форме графиков, диаграмм, функциональных схем и пояснительных надписей.
Существует возможность передачи данных РЛС по кабельным линиям связи на выносное индикаторное оборудование для управления воздушным движением и обеспечения систем наведения и управления перехватом. РЛС обеспечивается электроэнергией от входящего в комплект поставки автономного источника питания; может также подключаться к промышленной сети 220/380 В, 50 Гц.
Радиолокационная станция "Каста-2Е1"


Предназначена для контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.
Мобильная твердотельная РЛС "Каста-2Е1" может быть использована в различных системах военного и гражданского назначения - противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах.
Отличительные особенности станции:
- блочно-модульное построение;
- сопряжение с различными потребителями информации и выдача данных в аналоговом режиме;
- автоматическая система контроля и диагностики;
- дополнительный антенно-мачтовый комплект для установки антенны на мачте с высотой подъема до 50 м
- твердотельное построение РЛС
- высокое качество выходной информации при воздействии импульсных и шумовых активных помех;
- возможность защиты и сопряжения со средствами защиты от противорадио-локационных ракет;
- возможность определения государственной принадлежности обнаруженных целей.
РЛС включает аппаратную машину, антенную машину, электроагрегат на прицепе и выносное рабочее место оператора, позволяющее управлять РЛС с защищенной позиции на удалении 300 м.
Антенна РЛС представляет собой систему, состоящую из расположенных в два этажа двух зеркальных антенн с облучателями и компенсационных антенн. Каждое зеркало антенны выполнено из металлической сетки, имеет овальный контур (5,5 м х 2,0 м) и состоит из пяти секций. Это дает возможность укладывать зеркала при транспортировке. При использовании штатной опоры обеспечивается положение фазового центра антенной системы на высоте 7,0 м. Обзор в угломестной плоскости осуществляется формированием одного луча специальной формы, по азимуту - за счет равномерного кругового враще-ния со скоростью 6 или 12 об./мин.
Для генерации зондирующих сигналов в РЛС применяется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Приемные устройства осуществляют аналоговую обработку сигналов от трех основных и вспомогательных приемных каналов. Для усиления принятых сигналов используется твердотельный малошумящий СВЧ усилитель с коэффициентом передачи не менее 25 дБ при собственном уровне шума не более 2 дБ.
Управление режимами РЛС осуществляется с рабочего места оператора (РМО). Радиолокационная информация отображается на координатно-знаковом индикаторе с диаметром экрана 35 см, а результаты контроля параметров РЛС - на таблично-знаковом индикаторе.
РЛС "Каста-2Е1" сохраняет работоспособность в интервале температур от -50 °С до +50 °С в условиях атмосферных осадков (иней, роса, туман, дождь, снег, гололед), ветровых нагрузок до 25 м/с и расположения РЛС на высоте до 2000 м над уровнем моря. РЛС может работать непрерывно в течение 20 суток.
Для обеспечения высокой готовности РЛС имеется резервируемая аппаратура. Кроме того, в комплект РЛС включены запасное имущество и принадлежности (ЗИП), рассчитанные на год эксплуатации РЛС.
Для обеспечения готовности РЛС в пределах всего срока службы отдельно поставляется групповой ЗИП (1 комплект на 3 РЛС).
Средний ресурс РЛС до капитального ремонта 1 15 тыс. часов; средний срок службы до капитального ремонта - 25 лет.
РЛС "Каста-2Е1" обладает высокой модернизационной способностью в части улучшения отдельных тактико-технических характеристик (увеличение потенциала, уменьшение объема аппаратуры обработки, средств отображения, увеличение производительности, сокращение времени развертывания и свертывания, повышение надежности и др.). Возможна поставка РЛС в контейнерном варианте с использованием цветного дисплея.
Радиолокационная станция "Каста-2Е2"


Предназначена для контроля воздушного пространства, определения дальности, азимута, эшелона высоты полета и трассовых характеристик воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, в том числе летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидро-метеообразований. Маловысотная трехкоординатная РЛС кругового обзора дежурного режима "Каста-2Е2" применяется в системах противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах. Легко адаптируется к использованию в различных системах гражданского назначения.

Отличительные особенности станции:
- блочно-модульное построение большинства систем;
- развертывание и свертывание штатной антенной системы с помощью автоматизированных электромеханических устройств;
- полностью цифровая обработка информации и возможность передачи ее по телефонным каналам и радиоканалу;
- полностью твердотельное построение передающей системы;
- возможность установки антенны на легкой высотной опоре типа "Унжа", обеспечивающей подъем фазового центра на высоту до 50 м;
- возможность обнаружения малоразмерных объектов на фоне интенсивных мешающих отражений, а также зависших вертолетов при одновременном обнаружении движущихся объектов;
- высокая защищенность от несинхронных импульсных помех при работе в плотных группировках радиоэлектронных средств;
- распределенный комплекс вычислительных средств, обеспечивающий автоматизацию процессов обнаружения, сопровождения, измерения координат и опознавания государственной принадлежности воздушных объектов;
- возможность выдачи радиолокационной информации потребителю в любой удобной для него форме - аналоговой, цифро-аналоговой, цифровой координатной или цифровой трассовой;
- наличие встроенной системы функционально-диагностического контроля, охватывающего до 96 % аппаратуры.
РЛС включает в себя аппаратную и антенную машины, основную и резервную электростанции, смонтированные на трех автомобилях повышенной проходимости КамАЗ-4310. Имеет выносное рабочее место оператора, обеспечивающее управление РЛС, удаленное от нее на расстояние 300 м.
Конструкция станции устойчива к воздействию избыточного давления во фронте ударной волны, оснащена устройствами санитарной и индивидуальной вентиляции. Предусмотрена работа системы вентиляции в режиме рециркуляции без использования заборного воздуха.
Антенна РЛС представляет собой систему, состоящую из зеркала двойной кривизны, узла рупорных облучателей и антенн подавления приема по боковым лепесткам. Антенная система формирует по основному радиолокационному каналу два луча с горизонтальной поляризацией: острый и косекансный, перекрывающие заданный сектор обзора.
В РЛС используется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Управление режимами РЛС может производиться как по командам оператора, так и использованием возможностей комплекса вычислительных средств.
РЛС обеспечивает устойчивую работу при температуре окружающего воздуха ±50 °С, относительной влажности воздуха до 98 %, скорости ветра до 25 м/с. Высота размещения над уровнем моря - до 3000 м. Современные технические решения и элементная база, примененные при создании РЛС "Каста-2Е2", позволили получить тактико-технические характеристики на уровне лучших зарубежных и отечественных образцов.

Всем спасибо за внимание:)

Первичные РЛС обзора воздушного пространства (ПРЛС)

ПРЛС служат основным источником информации о динамической воздушной обстановке в определенной области пространства. Они предназначены для обнаружения ВС и определения азимутальных углов и дальностей до ВС. ПРЛС производят облучение всех объектов, попадающих в пределы их зоны обзора, и осуществляют прием сигналов, отраженных этим объектами. Анализ принятых сигналов позволяет получать всю необходимую информацию о движении ВС. Принцип функционирования ПРЛС аналогичен принципу функционирования обычной импульсной радиолокационной станции, хотя и имеет некоторые специфические особенности, обусловленные предъявляемыми требованиями, свойствами отражающих объектов и условиями применения.

Основные эксплуатационно-технические характеристики (ЭТХ)

К основным ЭТХ ПРЛС относятся зона обзора, разрешающая способность, точность, надежность, массово-габаритные характеристики.

Зона обзора (зона видимости) -- область пространства, в пределах которой ПРЛС обеспечивает обнаружение ВС и определение их координат с требуемой

точностью и надежностью при заданной вероятности правильного обнаружения и допустимом уровне ложных тревог. Зона обзора характеризуется дальностью обнаружения и телесным углом, в пределах которого она достигается. Точнее говоря, зона обзора задается дальностью обнаружения, рассматриваемой в качестве функции угловых координат ВС (азимута и угла места) относительно точки размещения ПРЛС.

Дальность радиолокационного обнаружения зависит от мощности излучения ПРЛС, направленных свойств антенны, чувствительности приемника и отражающих свойств воздушных судов.

где -- r max - максимальная дальность обнаружения; Р Прд - мощность, излучаемая передатчиком ПРЛС; G - коэффициент направленного действия антенны; л- длина волны, на которой работает ПРЛС; у ц - эффективная площадь рассеяния, характеризует отражающие свойства объекта отражения; Р Прмmin - чувствительность приемника, т.е. минимальная мощность отраженного сигнала на входе приемника ПРЛС, которая после обработки в нем, обеспечивает надежное воспроизведение отраженного сигнала на экране индикатора.

Выражение (1) показывает максимальную дальность действия ПРЛС в свободном пространстве и показывает, что для ощутимого увеличения дальности необходимо значительное увеличение Р Прд, у ц, G или уменьшение P Прм min и л.

Однако на процесс радиолокационного наблюдения в значительной мере оказывает влияние земная поверхность. Отражаемые ею сигналы суммируются с прямыми сигналами, что приводит к интерференции прямых и отраженных полей. В общем случае мощность принимаемых отраженных сигналов отличается от мощности принимаемых сигналов в условиях свободного пространства

Р * Прм = Р Прм · Ф 4 (в),

где - Ф(в) -- интерференционный множитель.

Отсюда следует, что максимальная дальность радиолокационного наблюдения с учетом влияния земли определиться как

r max з = r max · Ф(в) (2).

Интерференционный множитель является функцией угла места. Максимальное и минимальное значение его равны: Ф max = 1 + с 0 ; Ф min = 1 - с 0 , поэтому и максимальная дальность будет зависеть от угла места и изменяться в пределах от r max ·(1-с 0) до r max ·(1+с 0), где с 0 - обобщенный коэффициент отражения. Это приводит к тому, что диаграмма излучения и зона обнаружения в вертикальной плоскости имеют лепестковый характер (рис.58).

Рис. 58. Форма ДНА с учетом влияния земной поверхности

Углы места, под которыми располагаются максимумы и минимумы диаграммы излучения, определяются как:

sinв n min = n· л/2h; sinв n max = (2n+1) ·л/4h (3),

где - h - высота подвеса антенны ПРЛС; л - длина волны; n = 0,1,2,3,....

Отсюда следует, что угол места первого минимума в 1 min = 0, а первый максимум ориентирован под углом места в 1 max = л/4h.

Из выражения (3) видно, что чем выше поднята антенна над землей, тем ближе к земле прижимается первый лепесток, количество лепестков увеличивается, а ширина их уменьшается.

Так как коэффициент с 0 может принимать одно из значений в пределах 0… 1, то минимальное и максимальное значения интерференционного множителя Ф(в) при с 0 = 1 равны соответственно 0 и 2. Максимальная дальность действия в направлениях в max может возрастать в 2 раза по сравнению с r max , определяемой выражением (1). Зато в направлениях в min максимальная дальность действия уменьшается до нуля. Для уменьшения глубины провалов зоны видимости РЛС используются направленные в вертикальной плоскости антенны. Интерференционные явления особенно сильно проявляются в диапазоне метровых и дециметровых волн.

С учетом рассмотренных явлений диаграмма направленности антенны в вертикальной плоскости приобретает изрезанный многолепестковый характер (рис.).

Кривизна земной поверхности ограничивает r max прямой видимости r пр. Полученное ранее выражение (2) может использоваться в том случае, когда r max < r пр. Если же рассчитанная по этой формуле максимальная дальность действия окажется больше, чем r пр, то r max = r пр. Затухание радиоволн в атмосфере может привести к уменьшению максимальной дальности РЛС. При использовании в РЛС радиоволн длиннее 10см даже при неблагоприятных метеоусловиях затухание их в атмосфере незначительно. По этой причине при определении r max РЛС дециметрового и метрового диапазонов затухание можно не учитывать. Волны миллиметрового и сантиметрового диапазонов испытывают заметное затухание и при расчете r max РЛС этих диапазонов его необходимо учитывать.

Минимальная дальность действия ПРЛС -- это расстояние, ближе которого она не способна обнаруживать объекты. Она ограничивается длительностью зондирующих импульсов ф и временем восстановления приемного тракта с учетом инерционности антенного переключателя t в и определяется выражением

r min = c·(ф+t в)/2.

Обычно r min можно оценить величиной в несколько сотен метров. Для РЛС дальнего обнаружения такая величина не имеет большого значения. Для РЛ обзора летного поля и метеолокаторов этот параметр имеет существенное значение, и принимаются специальные меры по его уменьшению.

Пределы обзора по азимуту и углу места. Границы зоны обзора РЛС по угловым координатам в горизонтальной и вертикальной плоскостях определяются назначением и типом РЛС. Обзорные РЛС различного назначения, как правило, осуществляют круговой обзор в горизонтальной плоскости. В вертикальной плоскости зона обзора этих РЛС ограничивается сектором в несколько десятков градусов, а нижняя граница располагается под углом в десятые доли градуса относительно горизонта. Перед посадочными РЛС ставится задача обслуживать довольно ограниченный сектор пространства, и зона обзора этих РЛС ограничена по углу, как в горизонтальной, так и в вертикальной плоскости значениями 10…30 0 .

Диаграмма видимости РЛС. Для грамотной эксплуатации РЛС необходимо знать зону ее действия. Поскольку зона обзора не является однородной, для ее характеристики следует задавать не одно значение максимальной дальности действия, а ряд значений для различных направлений в вертикальной плоскости или различных высот. Для наглядного представления зона обзора изображается графически. График зоны обзора называется диаграммой видимости, которая делит все пространство на две области. Область внутри диаграммы является частью пространства, в которой объекты наблюдаются с заданной вероятностью правильного обнаружения. В другой области пространства, находящейся вне диаграммы видимости объекты не обнаруживаются.

Для двухкоординатных РЛС диаграмма видимости строится в вертикальной плоскости и при этом наиболее часто используется прямоугольная система координат высота - наклонная дальность (рис.59).

В этой системе координат: -- по горизонтальной оси откладывается наклонная дальность r; по вертикальной - приведенные высоты Н пр .

Приведенной высотой называется высота расположения объекта над плоскостью горизонта (или радиогоризонта, если учитывается рефракция радиоволн), проведенной из точки размещения РЛС:

Н пр = r·sinв или Н пр = Н - r 2 /2R э,

где R э - эквивалентный радиус Земли (R э = 8500км).

Рис. 59. Диаграмма видимости РЛС в прямоугольной системе координат высота - дальность

1 - линии равных наклонных дальностей; 2 - диаграмма видимости; 3 - лини равных истинных высот; 4 - линии равных углов места; 5 - линии равных приведенных высот

Линии равных истинных высот в прямоугольной системе координат Н пр, r будут иметь вид парабол. Линии равных углов места в имеют вид прямых, проходящих через начало координат и точки с координатами r, H пр. Особенностью и достоинством прямоугольной системы координат является

то, что область малых углов места, которая имеет наибольшее значение для РЛС большой дальности действия, представляется крупным планом. Максимальные дальности действия на заданных высотах определяются точками пересечения линий равных высот с диаграммой видимости, а точки пересечения этих линий с горизонтальной осью определяют дальность прямой видимости r пр.

Разрешающая способность по дальности определяется минимальным расстоянием Дr между двумя объектами, расположенными в одном радиальном направлении относительно РЛС, наблюдение которых на индикаторе может осуществляться раздельно. Разрешающая способность по дальности зависит от длительности зондирующего импульса ф и ряда параметров индикатора:

Дr = c·ф /2 + d п ·M / L р,

где d п - диаметр светового пятна на экране индикатора; L р - длина линии развертки; М - масштаб развертки по дальности.

Первое слагаемое определяет потенциальную разрешающую способность РЛС по дальности, которая зависит только от длительности зондирующего импульса. Второе слагаемое представляет разрешающую способность индикатора. Соотношение между потенциальной разрешающей способностью и разрешающей способностью индикатора в различных типах РЛС может быть различным.

Разрешающая способность по азимуту определяется минимальным углом в горизонтальной плоскости Дб между направлениями на два равноудаленных от РЛС объекта, при котором на индикаторе они наблюдаются раздельно

Эта разрешающая способность

Дб = И + d п ·M / L р ·r,

где И - ширина диаграммы направленности антенны в горизонтальной плоскости.

Первый член правой части этой формулы определяет потенциальную разрешающую способность РЛС по азимуту, которая зависит только от ширины диаграммы направленности в горизонтальной плоскости. ЧЕМ уже антенный луч, тем выше разрешающая способность по углу. Второе слагаемое представляет разрешающую способность по азимуту индикаторного устройства РЛС. Она определяется теми же параметрами индикатора, что и разрешающая способность по дальности, но дополнительно зависит от расстояния до объектов. Чем ближе располагаются объекты от РЛС, тем хуже разрешающая способность по азимуту. Для достижения наибольшей разрешающей способности надо выбирать масштаб развертки так, чтобы отметки от объектов наблюдались в конце линии развертки.

Точность измерения координат .

Точность измерения дальности. Измерение дальности сопровождаются рядом погрешностей, которые вызываются следующими причинами: нестабильностью скорости распространения радиоволн и искривлением траектории их распространения в атмосфере земли (погрешности, вызываемые этими причинами, называются погрешностями распространения ); влиянием шумовых и других помех, воздействующих на РЛС (шумовые погрешности ); несовершенством РЛС как технического устройства (инструментальные погрешности ); влиянием отражающих свойств реальных целей, состоящих из большого числа элементарных отражателей (погрешности цели ). Для РЛС, имеющих в качестве выходных устройств электронно-лучевые индикаторы, основное значение имеют инструментальные и в некоторых случаях шумовые погрешности.

К инструментальным погрешностям относятся погрешности калибровки и градуировки, отсчета, интерполяции и т.п. ОНИ полностью определяются устройством конкретной РЛС, многие из них можно найти только экспериментально. Среди инструментальных погрешностей следует выделить погрешность отсчета дальности, которая в известной степени определяется квалификацией оператора. В большинстве РЛС определение дальности производится по индикатору с помощью масштабных меток дальности. Оператор на глаз определяет положение отметки цели между метками дальности при этом СКП отсчета

уr 0 = (0,05...0,1)r м,

где r - расстояние между соседними масштабными метками дальности.

Опыт показывает, что средние квадратические значения погрешностей измерения дальности (СКП) оказываются равными: для трассовых ПРЛС -- 0,01r, для аэродромных ПРЛС -- 0,03r или 150 м (большая из указанных величин). Таким образом, СКП определения линии положения с помощью расовых ПРЛС равна 3,4 км на дальности 340 км и 0,5 км на дальности 50 км. СКП определения дальности с помощью аэродромных ПРЛС составляет 4,5 км на дальности 150 км и 1,5 км на дальности 50 км.

Точность измерения угловых координат. НА точность определения угловых координат в основном оказывают влияние инструментальные погрешности. К ним относятся погрешности формирования угловой развертки индикатора, образующиеся вследствие погрешностей синхронно-следящей системы, люфтов в механических редукторах, несовпадения оси антенны с осью симметрии луча антенны, погрешности формирования азимутальных меток и погрешности отсчета угловой координаты на индикаторе.

СКП отсчета азимута по индикатору зависит от углового размера отметки объекта, который примерно равен ширине ДНА И, и от углового интервала между азимутальными метками б м , т.е.

уб 0 = (0,05…0,1).

СКП определения азимута для трассовых ПРЛС равна 0,5 0 , для аэродромных - 2 0 . Соответствующие значения СКП определения линии положения на удалениях 340 км и 50 км для трассовых ПРЛС будут 3,4 км и 0,5 км, для аэродромных - 6 км на дальности 150 км и 2 км - на удалении 50 км.

Следует отметить, что точность определения места ВС с помощью ПРЛС зависит, прежде всего, от дальности до него и оценивается погрешностями, СКП которых имеет порядок единиц километров.

Из приводимых данных видно, что ПРЛС уступают по точности системам ближней навигации и значительно менее точны, чем спутниковые системы радионавигации.

Защита ПРЛС от помех

НА работу ПРЛС существенное влияние оказывают мешающие сигналы различного происхождения, называемыми помехами. В частности, кроме полезных сигналов, отражаемых ВС, возникают мешающие сигналы, появляющиеся из-за отражений от подстилающей поверхности, местных предметов и метеообразований, причем уровень этих сигналов значительно выше уровня полезного сигнала, так как создающие их объекты расположены вблизи от ПРЛС. Сигналы из-за мешающих отражений называются пассивными помехами . На работу ПРЛС оказывают мешающее воздействие работа сторонних РЛС и помехи индустриального и атмосферного происхождения. Помехи указанных видов называются активными. Помехи скрывают слабый полезный сигнал, либо создают фон, препятствующий его обнаружению и проведению измерений. Поэтому возникает необходимость реализаций мероприятий по защите ПРЛС от помех.

Защита от помех основывается на выявлении отличий параметров мешающих сигналов от полезных и разделении (селектировании) полезных сигналов и помех в интересах подавления. Рассмотрим основные методы защиты ПРЛС от помех.

Селекция движущихся целей (СДЦ) позволяет ослабить влияние отражений от подстилающей поверхности, местных предметов и облачных образований. Она состоит в разделении сигналов от ВС и неподвижных объектов из-за различия частот колебаний, отраженных этими объектами. Различие частот обусловлено доплеровским эффектом, который проявляется в том, что если расстояние между объектом отражения и ПРЛС изменяется, то частота сигнала принятого (отраженного) от такого объекта будет отличаться от частоты сигналов, излучаемых ПРЛС. Разница частот (доплеровский сдвиг) пропорциональна радиальной скорости движения отражающего объекта и обратно пропорциональна длине волны, на которой ведется излучение

Следовательно, доплеровский сдвиг отличен от нуля при отражении от объектов, движущихся и имеющих? 0, и равен 0 при отражении от неподвижных образований или объектов, движущихся по круговой траектории относительно ПРЛС. При этом в случае приближения ВС < 0 и F Д > 0, в случае удаления знак доплеровского сдвига меняется на противоположный, доплеровский сдвиг отсутствует при отражении от подстилающей поверхности и близок к нулю -- при отражении от медленно движущихся облаков.

В ПРЛС используется импульсный режим излучения, поэтому доплеровский сдвиг будет проявляться в изменении амплитуды импульсных сигналов, получаемых в результате преобразования в специальной аппаратуре СДЦ, которая входит в состав ПРЛС. При приеме пассивной помехи эти сигналы имеют постоянную амплитуду, поскольку F Д = 0 (рис.60,а2).

Рис. 60. Временные диаграммы процессов в аппаратуре СДЦ:

а - временные диаграммы отраженных сигналов после преобразования: 1 - полезный сигнал; 2 - пассивная помеха; б - упрощенная схема ФЧПК; в - форма полезного сигнала на выходе ФЧПК

В том случае, когда принимается полезный сигнал, импульсные сигналы будут иметь переменную амплитуду, изменяющуюся по закону F Д (рис.60,а1). Важным элементом аппаратуры СДЦ является фильтр ЧПК, который не должен пропускать импульсы пассивной помехи. Этот фильтр (рис.60,б) состоит из схемы задержки на время, равное периоду повторения импульсов Т и, схемы вычитания СВ и двухполупериодного выпрямителя - детектора ДпД. Отраженные импульсные сигналы после преобразования поступают на СВ непосредственно и через схему задержки. Это значит, что в СВ каждый импульс сравнивается по амплитуде с предшествующим импульсом. Если на фильтр поступают импульсы постоянной амплитуды (пассивная помеха), то в СВ импульсы компенсируются и на ее выходе сигнал отсутствует, т.е.пассивная помеха на индикатор не поступает. Если на фильтр поступают импульсы с переменной амплитудой (полезный сигнал) то на выходе СВ образуются импульсы также переменной амплитуды, поскольку теперь каждый импульс отличается по амплитуде от соседнего предшествующего импульса. Выпрямитель ДпД превращает разнополярные импульсы с выхода СВ в импульсы одной полярности (рис.60,в), которые подаются на индикатор и создают отметки ВС. Таким образом, в результате работы аппаратуры СДЦ на индикатор должны поступать только полезные сигналы, отраженные движущимися объектами, а пассивная помеха не проходит через фильтр ЧПК.

Работа РЛС с СДЦ имеет некоторые особенности. Огибающая последовательности импульсов, поступающих на схему ЧПК имеет истинную доплеровскую частоту F Д только в том случае, когда частота повторения зондирующих импульсов ПРЛС F и? 2F Д. В противном случае частота огибающей импульсов отличается от F Д и называется кажущейся доплеровской частотой F ДК. До тех пор, пока F Д? F и /2, кажущаяся доплеровская частота равна истинной доплеровской частоте. При дальнейшем увеличении F Д частота F ДК начинает уменьшаться и достигает нуля при F Д = F и. В общем случае

F ДК = 0 всегда, когда выполняется условие F Д = n·F и, где n=1,2,3... Указанное явление приводит к тому, что некоторые движущиеся цели не будут отображаться на индикаторе. Это происходит в тех случаях, когда F Д = n·F и. При этом F ДК = 0 и подвижные объекты создают на выходе приемника ПРЛС такие же сигналы, как и пассивные помехи, т.е. импульсы постоянной амплитуды, которые не проходят через ФЧПК схемы СДЦ.

Доплеровским частотам F Д = n·F и соответствуют некоторые радиальные скорости движения объектов W r c = n·F·л/2, где n = 0,1,2,3 и т.д. Эти скорости называют слепыми , поскольку объекты с такими скоростями в РЛС с СДЦ не наблюдаются. Слепые скорости могут быть устранены при одновременной работе РЛС на нескольких различных частотах повторения импульсов или при использовании переменной F и, что приводит к усложнению аппаратуры СДЦ и всей ПРЛС.

Другая особенность РЛС с СДЦ состоит в том, что такая станция не наблюдает объекты, движущиеся без изменения расстояния относительно РЛС или при малых скоростях изменения расстояния. Для того чтобы иметь возможность наблюдать такие объекты в ПРЛС имеется два режима работы: СДЦ и “пассивный”. В режиме “пассивный” аппаратура СДЦ отключается и на индикатор поступают все отраженные сигналы, в том числе и пассивная помеха.

Поляризационная селекция. Подавление пассивных помех, отраженных атмосферными образованиями, может быть достигнуто путем использования различия между полезными сигналами и помехами в их поляризации. Для этого в РЛС применяют радиоволны с круговой и эллиптической поляризациями, которые создаются с помощью специального устройства, расположенного в антенно-фидерном тракте. Излучаемая радиоволна с круговой поляризацией (рис.61,а) характеризуется тем, что вектор электрического поля Е вращается с постоянной угловой скоростью, равной несущей частоте сигнала щ, так что конец вектора описывает окружность. При отражении такой радиоволны от мелких частиц сферической формы ее поляризация остается круговой, но с противоположным направлением вращения вектора Е отр (рис.61,б). Такая радиоволна не проходит поляризационное устройство и поэтому пассивные помехи, созданные атмосферными образованиями, состоящими из мелких частиц сферической формы, не принимаются ПРЛС. При отражении радиоволн с круговой поляризацией от объектов неправильной геометрической формы (например, от ВС) ее поляризация становится эллиптической (рис.61,в), при которой вращающийся вектор Е отр изменяет свою величину и его конец описывает эллипс. Волна с такой поляризацией проходит через поляризационное устройство, но с ослаблением, и поэтому ПРЛС принимает полезные сигналы, хотя дальность действия уменьшается. Поляризационная селекция наиболее эффективно действует при подавлении пассивных помех, образованных туманом, дождем и водными облаками. Помехи, отраженные от снега, града и ледяных облаков, ослабляются в меньшей степени. Иногда больший эффект достигается при использовании излучаемых радиоволн эллиптической поляризацией

Селекция по частоте повторения импульсов используется для борьбы с несинхронными помехами, т. е. такими импульсными сигналами, частота повторения которых отличается от частоты повторения полезных сигналов. Схема селекции по частоте повторения, представляющая фильтр несинхронных помех, устанавливается между приемником и индикатором. В этом фильтре (рис.46,а) осуществляется задержка принимаемых сигналов точно на период следования и их сравнение с задержанными сигналами. Схема совпадения “И” вырабатывает сигнал на выходе, если поступающие на ее два входа импульсы совпадают во времени. Если принимаются сигналы, частота F и которых равна частоте повторения зондирующих импульсов данной РЛС, то задержанные на время t з = Т и импульсы и незадержанные импульсы появляются в одно и то же время и со схемы “И” сигналы проходят на индикатор (рис.62,б). Таким образом, сигналы данной РЛС проходят через фильтр несинхронных помех. Когда РЛС принимает сигналы, период повторения которых Т п? T и, то задержанные на время t з = Т и импульсы уже не будут совпадать с незадержанными, и на выходе схемы “И” по этой причине никаких импульсов не будет (рис.62,в). Это значит, что несинхронная помеха не пропускается фильтром и не воздействует на индикатор.


Требования к основным характеристикам ПРЛС

Таблица 11

Параметр

Аэродромные

Трассовые

Дальность действия, км (по ВС с ЭПР 15 м2)

Максимальная высота зоны действия, м

Пределы зоны обзора по углу места, град.

Вероятность правильного обнаружения

Вероятность ложной тревоги

СКП измерения дальности (большая из величин)

3% r или 150 м

СКП измерения азимута на максимальной дальности

Разрешающая способность по дальности (большая из величин)

1% r или 230 м

Разрешающая способность по азимуту на максимальной дальности, град.

Время обзора, с

Время перехода на резерв, с

В таблице 12 приведены основные характеристики отечественных обзорных РЛС. Сравнение данных таблиц 11 и 12 позволяет сделать вывод, что характеристики реальных обзорных РЛС по некоторым позициям отличаются от рекомендуемых. В частности, дальность действия эксплуатируемых в России ПРЛС значительно превышают стандарты, принятые в ИКАО. Причина этого состоит в том, что ГА вынуждена использовать образцы ПРЛС, разработанные для целей обороны и отличающимися повышенными возможностями по сравнению с ПРЛС гражданского назначения.

Таблица 12

Характеристика

“Скала-М/МПР”

“Иртыш”

“Экран-85”

“Скала-МПА”

“Онега”

Максимальная дальность (по ВС с ЭПР 10 м2), км

Вероятность обнаружения

Минимальная дальность, км

Максимальная высота обнаружения, км

Пределы зоны обзора по углу места, град

Разрешающая способность:

по дальности, м

по азимуту, град

Темп обновления информации, с

Длина волны, см

Наработка на отказ, ч

Средний ресурс, тыс.ч

СКП измерения:

дальности, м

азимута, град

Введение

1. Теоретическая часть

1.1. Общая характеристика РЛС УВД

1.2. Задачи и основные параметры РЛС

1.3. Особенности первичных РЛС

1.4. Трассовая обзорная РЛС «Скала - М»

1.5. Особенности функциональных узлов РЛС «Скала - М»

1.6. Патентный поиск

2. Безопасность и экологичность проекта

2.1. Безопасная организация рабочего места инженера ПЭВМ

2.2. Потенциально опасные и вредоносные производственные факторы при работе с ПЭВМ

2.3. Обеспечение электробезопасности при работе с ПЭВМ

2.4 Электростатические заряды и их опасность

2.5. Обеспечение электромагнитной безопасности

2.6. Требования к помещениям для эксплуатации ПЭВМ

2.7. Микроклиматические условия

2.8. Требования к шуму и вибрации

2.9. . Требования к организации и оборудованию рабочих мест с мониторами и ПЭВМ

2.10. Расчет освещенности

2.11. Экологичность проекта

Заключение

Библиографический список


ВВЕДЕНИЕ

Радиолокационные станции системы управления воздушным движением (УВД) являются основным средством сбора информации о воздушной обстановке для диспетчерского состава службы движения и средством контроля за ходом выполнения плана полетов, а также служат для выдачи дополнительной информации по наблюдаемым воздушным судам и обстановке на взлетно-посадочной полосе и рулежных дорожках. В отдельную группу могут быть выделены метеорологические РЛС, предназначенные для оперативного снабжения командного, летного и диспетчерского состава данными о метеорологической обстановке.

В нормах и рекомендациях ИКАО, Постоянной комиссии по радиотехнической и электронной промышленности СЭВ предусмотрено разделение радиолокационных средств на первичные и вторичные. Часто первичные радиолокационные станции (ПРЛС) и ВРЛС объединяют по принципу функционального использования и определяют как радиолокационный комплекс (РЛК). Однако характер получаемой информации, особенно построения аппаратуры, позволяет рассматривать данные станции отдельно.

Исходя из сказанного РЛС целесообразно объединить в следующие трастовые обзорные радиолокаторы ОРЛ-Т с максимальной дальностью действия около 400 км;

трассовые и аэроузловые радиолокаторы ОРЛ-ТА с максимальной дальностью действия порядка 250 км;

аэродромные обзорные радиолокаторы ОРЛ-А (варианты В1, В2, ВЗ) с максимальной дальностью действия 150, 80 и 46 км соответственно;

посадочные радиолокаторы (ПРЛ);

вторичные радиолокаторы (ВРЛ);

комбинированные обзорно-посадочные радиолокаторы (ОПРЛ);

радиолокаторы обзора летного поля (ОЛП);

метеорологические радиолокаторы (МРЛ).

В данной курсовой работе рассматривается принцип построения РЛС управления воздушным движением.


1. Теоретическая часть

1.1. Общая характеристика РЛС УВД

радиолокационный управление воздушный движение

В современных авторизированных системах (АС) управления воздушного движения (УВД) применяются РЛС третьего поколения. Переоснащение предприятий гражданской авиации занимает обычно длительный период, поэтому в настоящее время наряду с современными РЛС применяются РЛС второго и даже первого поколений. РЛС различных поколений отличаются, прежде всего, элементной базой, способами обработки радиолокационных сигналов и защиты РЛС от помех.

РЛС первого поколения начали широко применятся с середины 60-х годов. К ним относятся трассовые РЛС типа П-35 и аэродромные РЛС типа “Экран”. Эти радиолокаторы построены на электровакуумных приборах с применением навесных элементов и объемного монтажа.

РЛС второго поколения начали применяться в конце 60-х - начале 70-х годов. Повышение требований к источникам радиолокационной информации системы УВД привело к тому, что радиолокаторы этого поколения превратились в сложные многорежимные и многоканальные радиолокационные комплексы (РЛК). Радиолокационный комплекс второго поколения состоит из РЛС со встроенным радиолокационным каналом и аппаратуры первичной обработки информации (АПОИ). Ко второму поколению относятся трастовые РЛК «Скала» и аэродромные РЛК «Иртыш». В этих комплексах наряду с электровакуумными приборами начали широко применяться твердотельные элементы, модули и микромодули в сочетании с монтажом на основе печатных плит. Основной схемой построения первичного канала РЛК стала двухканальная схема с разносом частот, которая позволила повысить показатели надежности и улучшить характеристики обнаружения по сравнению с РЛС первого поколения. В РЛС второго поколения начали применяться более совершенные средства защиты от помех.

Опыт эксплуатации РЛС и РЛК второго поколения показал, что в целом они недостаточно полно удовлетворяют требованиям АС УВД. В частности, к их существенным недостаткам относятся ограниченное применение в аппаратуре современных средств цифровое обработки сигналов, малый динамический диапазон приемного тракта и др. Данные РЛС и РЛК используются в настоящее время в неавтоматизированных и автоматизированных системах УВД.

Первичные РЛС и РЛК третьего поколения начали использоваться в гражданской авиации нашей страны как основные источники радиолокационной информации АС УВД с 1979 г. Главное требование, которое определяет особенности РЛС и РЛК третьего поколения, - обеспечение стабильного уровня ложных тревог на выходе РЛС. Это требование выполняется благодаря адаптивным свойствам первичных РЛС третьего поколения. В адаптивных РЛС осуществляются анализ в реальном масштабе времени помеховой обстановки и автоматическое управление режимом работы РЛС. С этой целью вся зона обзора РЛС разбивается на ячейки, для каждой из которых в результате анализа за один или несколько периодов обзора принимается отдельное решение о текущем уровне помех. Адаптация РЛС к изменениям помеховой обстановки обеспечивает стабилизацию уровня ложных тревог и уменьшает опасность перегрузки АПОИ и аппаратуры передачи данных в центр УВД.

Элементной базой РЛС и РЛК третьего поколения являются интегральные микросхемы. В современных РЛС начинают широко применятся элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.


1.2. Задачи и основные параметры РЛС

Назначение РЛС - обнаружение и определение координат воздушных судов (ВС) в зоне ответственности радиолокатора. Первичные радиолокационные станции позволяют обнаружить и измерить наклонную дальность и азимут ВС методом активной радиолокации, используя отраженные от целей зондирующие сигналы радиолокатора. Они работают в импульсном режиме с высокой (100 ... 1000) скважностью. Круговой обзор контролируемого воздушного пространства осуществляется с помощью вращающейся антенны, обладающей остронаправленной ДНА в горизонтальной плоскости.

В табл. 1 приведены основные характеристики обзорных РЛС и их численные значения, регламентированные нормами СЭВ-ИКАО.

Рассматриваемые РЛС имеют значительное число общих черт и зачастую выполняют аналогичные операции. Им присуща идентичность структурных схем. Основные их отличия обусловлены различными особенностями функционального использования в иерархически сложной системе УВД.


1.3. Особенности первичных РЛС

Типовая структурная схема первичной РЛС (рис. 1) состоит из следующих основных узлов: антенно-фидерной системы (АФС) с механизмом привода (МПА); датчика угловых положений (ДУА) и канала подавления боковых лепестков (КП); передатчика (Прд) с устройством автоматической подстройки частоты (АПЧ); приемника (Прм); аппаратуры выделения и обработки сигналов (АВОС) - в ряде современных и перспективных радиолокационных станций и комплексов, объединяемых с приемником в процессор обработки сигналов; синхронизирующего устройства (СУ), тракта трансляции сигналов к внешним устройствам обработки и отображения (ТС); контрольного индицирующего устройства (КМ), обычно работающего в режиме «Аналог» или «Синтетика»; системы встроенного контроля (ВСК).

Основная антенна, входящая в состав АФС, предназначена для формирования ДНА, имеющей в вертикальной плоскости ширину 30 ... 40º, а в горизонтальной плоскости ширину 1 ...2°. Малая ширина ДНА в горизонтальной плоскости обеспечивает необходимый уровень разрешающей способности по азимуту. Для уменьшения влияния дальности обнаружения ВС на уровень отражения от цели сигналов ДНА в вертикальной плоскости часто имеет форму, подчиняющуюся закону Cosec 2 θ, где θ - угол места.

Канал подавления боковых лепестков ДН запросной антенны (при работе РЛС в активном режиме, т. е. при использовании встроенного или параллельно работающего ВРЛ) предназначен для уменьшений вероятностей ложных срабатываний самолетного ответчика. Конструктивно более проста система подавления боковых лепестков по ответу.

В большинстве РЛС в АФС используются два облучателя, один из которых обеспечивает обнаружение ВС на малых высотах, т. е. под малыми углами места. Особенностью ДН в вертикальной плоскости является градация ее конфигурации, особенно в нижней части, чем достигается уменьшение помех от местных предметов и подстилающей поверхности. С целью повышения гибкости юстирования РЛС предусмотрена возможность изменения максимума ДНА по углу 9 в пределах 0 ... 5º относительно горизонтальной плоскости. В состав АФС входят устройства, позволяющие изменять поляризационные характеристики излучаемых и принимаемых сигналов. Так, например, применение круговой поляризации позволяет ослабить на 15 ... 22 дБ сигналы, отраженные от метеообразований.

Отражатель антенны, выполненный из металлической сети, по форме близок к усеченному параболоиду вращения. В современных РЛС УВД используются также радиопрозрачные покрытия, защищающие АФС от осадков и ветровой нагрузки. На отражателе антенны монтируют антенны ВРЛ и антенну канала подавления.

Механизм привода антенны обеспечивает ее равномерное вращение. Частота вращения антенны определяется требованиями информационного обеспечения диспетчеров службы движения, ответственных за различные этапы полета. Как правило, предусмотрены варианты секторного и кругового обзора пространства.

Определение азимута ВС осуществляется с помощью считывания информации в системе координат, заданных для индицирующего устройства РЛС. Датчики угловых положений антенны предназначены для получения дискретных или аналоговых сигналов, являющихся базовыми для выбранной системы координат.

Передатчик предназначен для получения радиоимпульсов длительностью 1 ... 3 мкс. Частотный диапазон работы выбирается исходя из назначения РЛС. С целью снижения потерь, вызванных флуктуациями цели, увеличения числа импульсов, отраженных от цели за один обзор, а также с целью борьбы со слепыми скоростями применяют двухчастотное зондирование пространства. При этом рабочие частоты отличаются на 50...100 МГц.

Временные характеристики зондирующих импульсов зависят от функционального использования РЛС. В ОРЛ-Т используются зондирующие импульсы с длительностью порядка 3 икс, следующие с частотой повторений 300 ... 400 Гц, а ОРЛ-А имеют длительность импульса не более 1 мкс при частоте повторения 1 кГц. Мощность передатчика не превосходит 5МВт.

Для обеспечения заданной точности частоты генерируемых колебаний СВЧ, а также для нормальной работы схемы СДЦ используется устройство автоматической подстройки частоты (АПЧ). В качестве источника опорных колебаний в устройствах АПЧ используют стабильный местный гетеродин приемника. Скорость авто подстройки достигает единиц мегагерц на секунду, что позволяет снизить влияние АПЧ на эффективность работы системы СДЦ. Значение остаточной расстройки реальной величины частоты по отношению к номинальному значению не превосходит 0,1 ... 0,2 МГц.

Обработка сигналов по заданному алгоритму осуществляется в приемно-анализирующем устройстве РЛС в случае, когда Прм и АВОС практически неразличимы.

В общем случае приемник выполняет функции выделения, усиления и преобразования принимаемых эхо-сигналов. Особенностью приемников РЛС является наличие малошумящего усилителя высокой частоты, позволяющего снизить коэффициент шума приемника и тем самым увеличить дальность обнаружения цели. Среднее значение коэффициента шума приемников лежит в пределах 2 ... 4 дБ, а чувствительность составляет 140 дБ/Вт. Промежуточная частота обычно равна 30 МГц, двойное преобразование частоты в РЛС УВД практически не используется, коэффициент усиления УПЧ около 20 ... 25 дБ. В некоторых РЛС с целью расширения динамического диапазона входных сигналов используют усилители с ЛАХ.

В свою очередь для сужения диапазона входных сигналов, поступающих на АПОИ, используют АРУ, а также ВАРУ, повышающую коэффициент усиления УПЧ при работе на предельных дальностях обнаружения.

С выхода УПЧ сигналы идут по каналам амплитудного и фазового

детектирования.

Аппаратура временной обработки сигнала (АВОС) выполняет функцию фильтрации полезного сигнала на фоне помех. Наибольшей интенсивностью обладают непреднамеренные помехи от радиотехнических средств, расположенных в радиусе до 45 км от РЛС.

Аппаратурные средства борьбы с электромагнитными помехами включают специальные устройства коммутации и управления ДН, схемы ВАРУ, уменьшающие динамический диапазон входных сигналов от близкорасположенных целей, устройства бланкирования приемо-анализирующего тракта, фильтры синхронных и несинхронных помех и др.

Эффективным средством борьбы с помехами от неподвижных или слабо меняющих свое положение в пространстве и времени целей являются системы селекции движущихся целей (СДЦ), реализующие методы одно - или двукратной череспериодной компенсации. В ряде современных РЛС устройство селекции движущихся целей (СДЦ) реализует алгоритм цифровой обработки в квадратурных каналах, имея коэффициент подавления помех от неподвижных объектов 40 ... 43 дБ, а от метеопомех до 23 дБ.

Выходными устройствами АВОС являются параметрические и непараметрические обнаружители сигналов, позволяющие стабилизировать вероятность ложной тревоги на уровне 10 -6 .

При цифровой обработке сигналов АВОС представляет собой специализированный микропроцессор.

1.4. Трассовая обзорная РЛС «Скала - М»

Рассматриваемая РЛС представляет собой комплекс, в который входят ПРЛ и вторичный канал «Корень». РЛС предназначена для контроля и управления и может быть использована как в автоматизированных системах управления воздушным движением, так и в неавтоматизированных центрах УВД.

Основные параметры радиолокатора «Скала-М» приведены ниже.

Структурная схема РЛС «Скала-М» представлена на рис. 2. В ее состав входят первичный радиолокационный канал (ПРК), вторичный радиолокационный канал (ВРК), аппаратура первичной обработки информации (АПОИ) и коммутирующее устройство (КУ).

В ПРК входят: поляризационные устройства ПУ; вращающиеся переходы ВП, два блока сложения мощностей БСМ1 (2); антенные переключатели АП1 (2, 3); передатчики Прд (2, 3); блок разделения сигналов БРС; приемники Прм 1 (2, 3); система селекции движущихся целей СДЦ; устройство формирования зоны обнаружения ФЗО и контрольный индикатор КИ. Вторичный радиолокационный канал включает в себя: антенную систему ВРЛ АВРЛ; самолетный ответчик типа СОМ-64, используемый в качестве устройства, контролирующего работу ВРК-СО; фидерное устройство ФУ; приемопередающее устройство, используемое в режиме «RBS» ПП; устройство согласования СГ и приемное устройство, используемое в режиме УВД-ПРМ.

Съем и трансляция информации осуществляются с помощью широкополосной радиорелейной линии ШРЛ и узкополосной линии передачи УЛП.

Первичный канал РЛС представляет собой двухканальное устройство и работает на трех фиксированных частотах. Нижний луч ДНА формируется облучателем основного канала, а верхний - облучателем канала индикации высоколетящих целей (ИВЦ). В РЛС реализована возможность одновременной обработки информации в когерентном и амплитудном режимах, что позволяет проводить оптимизацию зоны обзора, представленную на рис. 3.

Границы зоны обнаружения устанавливаются в зависимости от помеховой ситуации. Их выбор определяется импульсами, вырабатываемыми в КИ, управляющими коммутацией в АПОИ и видеотракте.

Участок 1 имеет протяженность не более 40 км. Информация формируется при помощи сигналов верхнего луча. При этом подавление отражений от местных предметов в ближней зоне составляет 15 ... 20 дБ.

На участке 2 используются сигналы верхнего луча при работе приемо-анализирующего устройства в амплитудном режиме и сигналы нижнего луча, обработанные в системе СДЦ, причем в канале нижнего луча используется ВАРУ, имеющая динамический диапазон на 10 ...15 дБ больше, чем в канале верхнего луча, что обеспечивает контроль за местоположением ВС, находящимся под малыми углами места.

Второй участок заканчивается на таком удалении от РЛС, при котором эхо-сигналы от местных предметов, принимаемые нижним лучом, имеют незначительный уровень.

На участке 3 используются сигналы верхнего луча, а на 4 - нижнего луча. В приемо-анализирующем тракте осуществляется режим амплитудной обработки.

Вобуляция частоты запуска РЛС позволяет устранить провалы в амплитудно-скоростной характеристике и устранить неоднозначность отсчета. У ПРДЗ частота повторения зондирующих сигналов 1000 Гц, а у первых двух 330 Гц. Увеличенная частота следования повышает эффективность СДЦ за счет уменьшения влияния флюктуации местных предметов и вращения антенны.

Принцип работы аппаратуры ПРК заключается в следующем.

Высокочастотные сигналы передающих устройств подаются через антенные переключатели на устройства сложения мощностей и далее через вращающиеся сочленения и устройство управления поляризацией к облучателю нижнего луча. Причем на участках 1 и 2 зоны обнаружения используются сигналы первого приемопередатчика, поступающие по верхнему лучу и прошедшие обработку в СДЦ. На 3 - композиционные сигналы, поступающие по обоим лучам и обработанные в амплитудном канале первого и второго приемопередатчиков, а на 4 - сигналы первого и второго приемопередатчиков, поступающие по нижнему лучу и обработанные в амплитудном канале. При отказе любого из комплектов его место автоматически занимает третий приемопередатчик.

Устройства сложения мощностей производят фильтрацию принятых нижним лучом эхо-сигналов и в зависимости от несущей частоты передают их через АП на соответствующие приемо-анализирующие устройства. Последние имеют раздельные каналы обработки сигналов основного луча и луча канала индикации высоколетящих целей (ИВЦ). Канал ИВЦ работает только на прием. Его сигналы проходят поляризационное устройство и после блока разделения сигналов поступают на три приемника. Приемники выполнены по супергетеродинной схеме. Усиление и обработка сигналов промежуточной частоты выполняются в двухканальном УПЧ. В одном канале усиливаются и обрабатываются сигналы верхнего луча, в другом - нижнего.

Каждый из аналогичных каналов имеет два выхода: после амплитудной обработки сигналов и по промежуточной частоте для фазовых детекторов системы СДЦ. На фазовых детекторах выделяются синфазная и квадратурная составляющие.

После СДЦ сигналы поступают в АПОИ, объединяются с сигналами ВРК и далее подаются на аппаратуру отображения и обработки радиолокационной информации. В АС УВД в качестве АПОИ может использоваться экстратор СХ-1000. а в качестве устройств трансляции-модемы СН-2054.

Вторичный радиолокационный канал обеспечивает получение координатной и дополнительной информации от ВС, оборудованных ответчиками в режимах «УВД» или «RBS». Форма сигналов в режиме запроса определяется нормами ИКАО, а при приеме - нормами ИКАО или отечественного канала в зависимости от режима работы ответчиков. Структурная схема и параметры аппаратуры вторичного канала аналогичны автономному ВРЛ типа «Корень-АС».

1.5. Особенности функциональных узлов РЛС «Скала - М»

Антенно-фидерное устройство ПРК состоит из антенны, формирующей ДНА, и фидерного тракта, содержащего коммутирующие устройства.

Конструктивно антенна первичного канала выполнена в виде параболического отражателя размером 15x10,5 м и двух рупорных облучателей. Нижний луч формируется однорупорным облучателем основного канала и отражателем, а верхний – отражателем и однорупорным облучателем, расположенным ниже основного. Форма ДН в вертикальной плоскости cosec 2 θ , где θ – угол места. Ее вид приведен на рис. 4.

Для уменьшения отражений от метеообразований предусмотрены поляризатор основного канала, обеспечивающий плавное изменение поляризации излучаемых сигналов от линейной до круговой, и поляризатор канала ИВЦ, постоянно построенный на круговую поляризацию.

Развязка между устройствами сложения мощностей не менее 20 дБ, а развязка между отдельными каналами не менее 15 дБ. В волноводном тракте предусмотрена возможность регистрации коэффициента стоячих волн не менее 3, при f,cjk.nyjq погрешности измерения 20 %.

Формирование ДНА вторичного канала производится отдельной антенной, аналогичной антенне ВРЛ типа «Корень - АС», расположенной на отражателе основной антенны. На дальностях, превышающих 5 км, обеспечивается сектор подавления сигналов по боковым лепесткам в пределах 0..360º.

Обе антенны помещены над радиопрозрачным куполом, что позволяет существенно снизить ветровую нагрузку и повысить защиту от атмосферных воздействий.

Передающая аппаратура первичного канала предназначена для генерирования импульсов СВЧ длительностью 3.3 мкс со средней мощностью в импульсе 3.6 кВт, а также для формирования опорных сигналов промежуточной частоты для фазовых детекторов и сигналов гетеродинных частот для смесителей приемоанализирующих трактов. Передатчики выполнены по типовому для истинно когерентных РЛС принципу, что позволяет получить достаточную фазовую стабильность. Сигналы несущей частоты получаются путем преобразования частоты задающего генератора промежуточной частоты, имеющего кварцевую стабилизацию.

Оконечным каскадом передатчика является усилитель мощности, выполненный на пролетном клистроне. Модулятор выполнен в виде накопителя с полным разрядом из пяти параллельно включенных модулей. Несущие частоты и частоты гетеродина имеют следующие значения: f 1 =1243 МГц; f Г1 =1208 МГц; f 2 =1299 МГц; f Г2 =1264 МГц; f 3 =1269 МГц; f Г3 =1234 МГц.

Приемный тракт ПРК предназначен для усиления, селектирования, преобразования, детектирования эхо-сигналов, а также для ослабления сигналов, отраженных от метеообразований.

Каждый из трех приемоанализирующих трактов имеет два канала – основной и индикации высотных целей и выполнен по супергетеродинной схеме с однократным преобразованием частоты. Выходные сигналы с приемников подаются на СДЦ (по промежуточной частоте) и на формирователь зоны обнаружения – видеосигналы.

В приемниках осуществляется обработка сигналов в линейном и логарифмическом амплитудных подканалах, а также в когерентном подканале, чем достигается стабилизация уровня ложных тревог до уровня собственных шумов в логарифмическом видеоусилителе.

Частичное восстановление динамического диапазона осуществляется с помощью видеоусилителей с антилогарифмической амплитудной характеристикой. Для сжатия динамического диапазона эхо-сигналов на малых дальностях, а также ослабления ложного приема по боковым лепесткам ДНА применена ВАРУ. Имеется возможность временного бланкирования одной или двух областей при интенсивном воздействии помех.

В каждом приемном канале обеспечивается поддержание заданных уровней шумов (схема ШАРУ) на выходах каналов с точностью не менее 15 %.

Цифровое устройство СДЦ имеет два идентичных канала, в которых обрабатываются синфазная и квадратурная составляющая. Выходные сигналы с фазовых детекторов после обработки во входных устройствах аппроксимируются ступенчатой функцией с шагом дискретизации 27 мкс. Затем они поступают на АЦП, где преобразуются в 8-миразрядный код и вводятся в запоминающее и вычислительное устройства. Запоминающее устройство рассчитано на запоминание 8-миразрядного кода в 960 квантах дальности.

В СДЦ предусмотрена возможность двойного и тройного череспериодного вычитания сигналов. Квадратичное сложение осуществляется в экстракторе модуля, а устройство ЛОГ-МПВ-АНТИЛОГ производит селекцию видеоимпульсов по длительности и восстанавливает динамический диапазон выходных видеоимпульсов. Предусмотренный в схеме редиркуляционный накопитель позволяет повысить сигнал-шум и является средством защиты от несинхронных импульсных помех. С него сигналы поступают на ЦАП, усиливаются и подаются на АПОИ и КУ. Дальность действия СДЦ при частоте повторения fп=330 Гц – 130 км, fп=1000Гц – 390 км, а коэффициент подавления сигналов от неподвижных объектов 40 дБ.

1.6. Патентный поиск

Рассмотренная выше РЛС третьего поколения появилась в 80-х годах. В мире существует большое количество подобных комплексов. Рассмотрим несколько запатентованных устройств УВД и их характеристики.

В США в 1994 году появились несколько патентов различные РЛС УВД.

920616 Том 1139 №3

Способ и устройство для системы воспроизведения информации наземной РЛС .

Система управления воздушным движением /УВД/ содержит РЛС обнаружения, радиомаяк и общий цифровой кодер для сопровождения самолетов и устранения возможности столкновений. В процессе передачи данных на систему УВД производится сбор данных, поступающих с общего цифрового кодера, при этом для всех сопровождаемых самолетов собираются данные о дальности и азимуте. Из общего массива данных отфильтровываются данные, не относящиеся к местонахождению сопровождаемых самолетов. В результате формируется сообщение о траектории с полярными координатами. Полярные координаты преобразуются в прямоугольные, после чего формируется и кодируется блок данных, несущий информацию о всех самолетах, сопровождаемых системой УВД. Блок данных формируется вспомогательным компьютером. Блок данных считывается во временное ЗУ и передается на приемную станцию. На приемной станции принятый блок данных декодируется и воспроизводится в виде, приемлемом для восприятия человеком.

Переводчик И.М.Леоненко Редактор О.В.Иванова

2. G01S13/56,13/72

920728Том 1140 №4

Обзорная РЛС с вращающейся антенной.

Обзорная РЛС содержит вращающуюся антенну для получения информации о дальности и азимуте обнаруженного объекта и электрооптический датчик, вращающийся вокруг оси вращения антенны, для получения дополнительной информации о параметрах обнаруженного объекта. Антенна и датчик вращаются несинхронно. С антенной электрически соединено устройство, которое при каждом обороте антенны определяет азимут, дальность и доплеровскую скорость обнаруженных объектов. С электрооптическим датчиком соединено устройство, которое при каждом обороте датчика определяет азимут и угол места объекта. К устройствам, определяющим координаты объекта, избирательно подключается общий блок сопровождения, объединяющий полученную информацию и выдающий данные для сопровождения обнаруженного объекта.


2. Безопасность и экологичность проекта

2.1. Безопасная организация рабочего места инженера ПЭВМ

Парк персональных электронно-вычислительных машин (ПЭВМ) и видеодисплейных терминалов (ВДТ) на электронно-лучевых трубках (ЭЛТ) значительно увеличивается. Компьютеры проникают во все сферы жизни современного общества и используются для получения, передачи и обработки информации на производстве, в медицине, банковских и коммерческих структурах, образовании и т.д. Даже при разработке, создании и освоении новых изделий не обойтись без компьютеров.

На рабочем месте должны быть предусмотрены меры защиты от возможного воздействия опасных и вредных факторов производства. Уровни этих факторов не должны превышать предельных значений, оговоренных правовыми, техническими и санитарно-техническими нормами. Эти нормативные документы обязывают к созданию на рабочем месте условий труда, при которых влияние опасных и вредных факторов на работающих либо устранено совсем, либо находится в допустимых пределах

2.2. Потенциально опасные и вредоносные производственные факторы при работе с ПЭВМ

Имеющийся в настоящее время комплекс разработанных организационных мероприятий и технических средств защиты, накопленный опыт работы ряда вычислительных центров (далее ВЦ) показывает, что имеется возможность добиться значительно больших успехов в деле устранения воздействия на работающих опасных и вредных производственных факторов.

Опасным называется производственный фактор, воздействие которого на работающего человека в определенных условиях приводит к травме или другому внезапному резкому ухудшению здоровья. Если же производственный фактор приводит к заболеванию или снижению трудоспособности, то его считают вредным. В зависимости от уровня и продолжительности воздействия вредный производственный фактор может стать опасным.

Состояние условий труда работников ВЦ и его безопасности, на сегодняшний день, еще не удовлетворяют современным требованиям. Работники ВЦ сталкиваются с воздействием таких физически опасных и вредных производственных факторов, как повышенный уровень шума, повышенная температура внешней среды, отсутствие или недостаточная освещенность рабочей зоны, электрический ток, статическое электричество и другие.

Многие сотрудники ВЦ связаны с воздействием таких психофизиологических факторов, как умственное перенапряжение, перенапряжение зрительных и слуховых анализаторов, монотонность труда, эмоциональные перегрузки. Воздействие указанных неблагоприятных факторов приводит к снижению работоспособности, вызванное развивающимся утомлением. Появление и развитие утомления связано с изменениями, возникающими во время работы в центральной нервной системе, с тормозными процессами в коре головного мозга.

Медицинские обследования работников ВЦ показали, что помимо снижения производительности труда высокие уровни шума приводят к ухудшению слуха. Длительное нахождение человека в зоне комбинированного воздействия различных неблагоприятных факторов может привести к профессиональному заболеванию. Анализ травматизма среди работников ВЦ показывает, что в основном несчастные случаи происходят от воздействия физически опасных производственных факторов при выполнении сотрудниками несвойственных им работ. На втором месте случаи, связанные с воздействием электрического тока.


2.3. Обеспечение электробезопасности при работе с ПЭВМ.

Электрический ток представляет собой скрытый тип опасности, т.к. его трудно определить в токо - и нетоковедущих частях оборудования, которые являются хорошими проводниками электричества. Смертельно опасным для жизни человека считают ток, величина которого превышает 0,05А.. С целью предупреждения поражений электрическим током к работе должны допускаться только лица, хорошо изучившие основные правила по технике безопасности.

Электрические установки, к которым относится практически все оборудование ПЭВМ, представляют для человека большую потенциальную опасность, так как в процессе эксплуатации или проведении профилактических работ человек может коснуться частей, находящихся под напряжением. Специфическая опасность электроустановок – токоведущие проводники, оказавшегося под напряжением в результате повреждения (пробоя) изоляции, не подают каких-либо сигналов, которые предупреждают человека об опасности. Реакция человека на электрический ток возникает лишь при протекании последнего через тело человека. Исключительно важное значение для предотвращения электротравмотизма имеет правильная организация обслуживания действующих электроустановок ВЦ, проведения ремонтных, монтажных и профилактических работ.

С целью уменьшения опасности поражения электрическим током необходимо провести комплекс мероприятий по повышению электробезопасности приборов, устройств и помещений, связанных с процессом проектирования, производства и эксплуатации устройства, в соответствии с ГОСТ 12.1.019-79* «Электробезопасность. Общие требования» . Эти мероприятия технические и организационные. Например, в качестве технических мер, может быть применение двойной изоляции ГОСТ 12.2.006-87*, а в качестве организационных мер, может быть проведение инструктажа, проверка электрооборудования на исправность, качества изоляции, заземления, обеспечение средств первой медицинской помощи и др.

2.4. Электростатические заряды и их опасность

Электростатическое поле (ЭСП) возникает за счет наличия электростатического потенциала (ускоряющего напряжения) на экране дисплея. При этом появляется разность потенциалов между экраном дисплея и пользователем ПЭВМ. Наличие ЭСП в пространстве вокруг ПЭВМ приводит, в том числе к тому, что пыль из воздуха оседает на клавиатуре и затем проникает в поры на пальцах, вызывая заболевания кожи вокруг рук.

ЭСП вокруг пользователя ПЭВМ зависит не только от полей, создаваемых дисплеем, но также от разности потенциалов между пользователем и окружающими предметами. Эта разность потенциалов возникает, когда заряженные частицы накапливаются на теле в результате ходьбы по полу с ковровым покрытием при трении материалов одежды друг о друга и т.п.

В современных моделях дисплеев приняты кардинальные меры для снижения электростатического потенциала экрана. Но нужно помнить, что разработчиками дисплеев применяются различные технические способы для борьбы с данным фактом, в том числе и так называемый компенсационный способ , особенность которого заключается в том, что снижение потенциала экрана до требуемых норм обеспечивается лишь в установившемся режиме работы дисплея. Соответственно, подобный дисплей имеет повышенный (в десятки раз более установившегося значения) уровень электростатического потенциала экрана в течение 20..30 секунд после своего включения и до нескольких минут после выключения, что достаточно для электризации пыли и близлежащих предметов.


1. Меры и средства подавления статической электризации.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статического электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия.

Устранение образования значительных статического электричества достигается при помощи следующих мер:

· Заземление металлических частей производственного оборудования;

· Увеличение поверхностной и объемной проводимости диэлектриков;

· Предотвращение накопления значительных статических зарядов путем установки в зоне электрозащиты специальных нейтрализаторов.

2.5 Обеспечение электромагнитной безопасности

Большинство ученых считают, что как кратковременное, так и длительное воздействие всех видов излучения от экрана монитора не опасно для здоровья персонала, обслуживающего компьютеры. Однако исчерпывающих данных относительно опасности воздействия излучения от мониторов на работающих с компьютерами не существует и исследования в этом направлении продолжаются.

Допустимые значения параметров неионизирующих электромагнитных излучений от монитора компьютера представлены в табл. 1.

Максимальный уровень рентгеновского излучения на рабочем месте оператора компьютера обычно не превышает 10мкбэр/ч, а интенсивность ультрафиолетового и инфракрасного излучений от экрана монитора лежит в пределах 10…100мВт/м2.

Допустимые значения параметров электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96)


Таблица 1

При неверной общей планировке помещения, неоптимальной разводке питающей сети и неоптимальном устройстве контура заземления (хотя и удовлетворяющем всем регламентируемым требованиям электробезопасности) собственный электромагнитный фон помещения может оказаться настолько сильным, что обеспечить на рабочих местах пользователей ПЭВМ требования СанПиН по уровням ЭМП не представляется возможным ни при каких ухищрениях в организации самого рабочего места и ни при каких (даже суперсовременных) компьютерах. Более того, сами компьютеры, будучи помещёнными в сильные электромагнитные поля, становятся неустойчивыми в работе, появляется эффект дрожания изображения на экранах мониторов, существенно ухудшающий их эргономические характеристики.

Можно сформулировать следующие требования , которыми необходимо руководствоваться при выборе помещений для обеспечения в них нормальной электромагнитной обстановки, а также для обеспечения условии устойчивой работы ПЭВМ в условиях электромагнитного фона:

1. Помещение должно быть удалено от посторонних источников ЭМП, создаваемых мощными электроустройствами, электрическими распределенными щитами, кабелями электропитания с мощными энергопотребителями, радиопередающими устройствами и пр. Если данная возможность в выборе помещения отсутствует, рекомендуется предварительно (до установки компьютерной техники) провести обследование помещения по уровню низкочастотных ЭМП. Затраты на последующее обеспечение устойчивом работы ПЭВМ в неоптимально выбранном но данному критерию помещении несравнимо выше, чем стоимость обследования.

2. Если на окнах помещения имеются металлические решетки, то они должны быть заземлены. Как показывает опыт, несоблюдение данного правила может привести к резкому локальному повышению уровня полей в какой-либо точке (точках) помещения и к сбоям к работе компьютера, случайно установленного в данной точке.

3. Групповые рабочие места (характеризующиеся значительной скученностью компьютерной и другой оргтехники) желательно размещать на нижних этажах здании. При подобном размещении рабочих мест минимально их влияние на общую электромагнитную обстановку в здании (энергонагруженные кабели питания не идут по всему зданию), а также существенно снижается общий электромагнитный фон на рабочих местах с компьютерной техникой (вследствие минимального значения сопротивления заземления именно на нижних этажах зданий).

Вместе с тем можно сформулировать ряд конкретных практических рекомен даций , по организации рабочего места и размещению компьютерной техники в самих помещениях, выполнение которых заведомо улучшит электромагнитную обстановку и с намного большей вероятностью обеспечит аттестацию рабочего места без принятия для этого каких-либо дополнительных специальных мер:

Основные источники импульсных электромагнитных и электростатических полей – монитор и системный блок ПЭВМ должны быть в пределах рабочего места максимально удалены от пользователя.

Должно быть обеспечение надежное заземление, подводимое непосредственно к каждому рабочему месту (использование удлинителей с евророзетками, снабженными заземляющими контактами).

Крайне нежелательным является вариант одной линии питания, обходящей по всему периметру рабочего помещения.

Провода питания желательно проводить в экранирующих металлических оболочках или трубах.

Должно быть обеспечено наибольшее удаление пользователя от сетевых розеток и проводов электропитания.

Выполнение перечисленных выше требований может обеспечить снижение в десятки и сотни раз общего электромагнитного фона в помещении и на рабочих местах.

2.6. Требования к помещениям для эксплуатации ПЭВМ.

Помещение с мониторами и ПЭВМ должны иметь естественное и искусственное освещение. Естественное освещение должно осуществляться через светопроемы, ориентированные преимущественно на север и северо - восток обеспечивать коэффициент естественного освещения (КЕО) не ниже 1,2 % в зонах с устойчивым снежным покровом и не ниже 1,5 % на остальной территории. Указанные значения КЕО нормируются для зданий, расположенных в III световом климатическом поясе.

Площадь на одно рабочее место с ВДТ или ПЭВМ для взрослых пользователей должна составлять не менее 6,0 кв. м., а объем не менее 20,0 куб. м.

Для внутренней отделки интерьера помещений с мониторами и ПЭВМ должны использоваться диффузно - отражающиеся материалы с коэффициентом отражения для потолка - 0,7 - 0,8; для стен - 0,5 - 0,6; для пола - 0,3 - 0,5.

Поверхность пола в помещениях эксплуатации мониторов и ПЭВМ должна быть ровной, без выбоин, нескользкой, удобной для очистки и для влажной уборки, обладать антистатическими свойствами.


2.7. Микроклиматические условия

Одним необходимых условий комфортной деятельности человека является обеспечение в рабочей зоне благоприятного микроклимата, который определяется температурой, влажностью, атмосферным давлением, интенсивностью излучения нагретых поверхностей. Микроклимат оказывает существенное влияние на функциональную деятельность человека, его здоровье.

В помещениях с ПЭВМ необходимо соблюдать оптимальные микроклиматические условия. Они обеспечивают общее и локальное ощущение теплового комфорта в течение 8-ми часового рабочего дня при минимальном напряжении механизмов терморегуляции, не вызывают отклонений в состоянии здоровья, создают предпосылки для высокого уровня работоспособности.

Согласно СанПин 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» оптимальные микроклиматические условия для помещения в теплый период года:

Относительная влажность 40-60%;

Температура воздуха 23-25 °С;

Скорость движения воздуха до 0,1 м/с.

Оптимальные нормы достигаются при использовании вентиляционных систем.

2.8. Требования к шуму и вибрации

При выполнении основной работы на мониторах и ПЭВМ (диспетчерские, операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.) где работают инженерно - технические работники, осуществляющие лабораторный, аналитический или измерительный контроль, уровень шума не должен превышать 60 дБА.

В помещениях операторов ЭВМ (без дисплеев) уровень шума не должен превышать 65 дБА.

На рабочих местах в помещениях для размещения шумных агрегатов вычислительных машин (АЦПУ, принтеры и др.) уровень шума не должен превышать 75 дБА.

Шумящее оборудование (АЦПУ, принтеры и др.), уровни шума которого превышают нормированные, должно находится вне помещения с монитором и ПЭВМ.

Снизить уровень шума в помещениях с мониторами и ПЭВМ можно использованием звукопоглощающих материалов с максимальными коэффициентами звукопоглощения в области частот 63 - 8000 Гц для отделки помещений (разрешенных органами и учреждениями Госсанэпиднадзора России), подтвержденных специальными акустическими расчетами.

Дополнительным звукопоглощением служат однотонные занавеси из плотной ткани, гармонирующие с окраской стен и подвешенные в складку на расстоянии 15 - 20 см от ограждения. Ширина занавеси должна быть в 2 раза больше ширины окна.

2.9. Требования к организации и оборудованию рабочих мест с мониторами и ПЭВМ

Рабочие места с ВДТ и ПЭВМ по отношению к световым проектам должны располагаться так, чтобы естественный свет падал сбоку, преимущественно слева.

Схемы размещения рабочих мест с ВДТ и ПЭВМ должны учитывать расстояния между рабочими столами с видеомониторами (в направлении тыла поверхности одного видеомонитора и экрана другого видеомонитора), которое должно быть не мене 2,0 м, а расстояние между боковыми поверхностями видеомониторов - не менее 1,2 м.

Оконные проемы в помещениях использования ВДТ и ПЭВМ должны быть оборудованы регулируемыми устройствами типа: жалюзи, занавесей, внешних козырьков и др.

Экран видеомонитора должен находиться на расстоянии 600 - 700 мм, но не ближе 500 мм с учетом алфавитно - цифровых знаков и символов.

Помещения с ВДТ и ПЭВМ должны быть оснащены аптечкой первой помощи и углекислотными огнетушителями.

Схема расположения рабочих мест относительно светопроемов.

Целью расчета является определение числа и мощности светильников, необходимых для обеспечения освещенности, достаточной для работы персонала вычислительного центра (ВЦ). Тип источников света - газоразрядные (люминесцентные лампы низкого давления, имеющие форму цилиндрической трубки),светильники - прямого света. Система освещения общая, так как она создает равномерное освещение по всему объему ВЦ.

Яркость светильников общего освещения в зоне углов излучения от 50 до 90 градусов с вертикалью в продольной и поперечной плоскостях должна составлять не более 200 кд/м 2 , защитный угол светильников должен быть не менее 40 градусов.

Общее освещение следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении ПК и ВДТ.

Расчет системы освещения осуществляется методом коэффициента использования светового потока, который выражается отношением светового потока, падающего на расчетную поверхность, к суммарному потоку всех ламп. В помещении имеется два окна. Расположим светильники в два ряда параллельно длинной стороне помещения, имеющего размеры 8 х 4 м и высотой 3 м. Светильники в рядах расположены с зазором в 1,5 м, расстояние между рядами 1,5 м, установлены на потолке. Высота рабочих мест составляет 0,75 м, поэтому расчетная высота h (высота подвеса светильников над рабочей поверхностью) будет равна 2,25 м.

Искусственное освещение в помещениях с ПК следует осуществлять системой общего равномерного освещения. В соответствии со СНиП 23-05-93 освещенность на поверхности стола в зоне размещения рабочего документа от системы общего освещения должна быть 300-500 лк. В качестве источников света общего освещения следует применять преимущественно люминесцентные лампы мощностью 35-65 Вт типа ЛБ.

Световой поток группы ламп светильника найдем по следующей формуле:

=(*S**Z)/(N*), (1)

где Е н - требуемый нормативный уровень освещенности рабочей поверхности. Возьмем Е норм =300 лк – это наиболее оптимальное значение для данного помещения;

S = А*В = 8 * 4 = 32 м 2 - площадь помещения;

k 3 = 1,5- коэффициент запаса, учитывающий запыленность светильников и износ люминесцентных ламп в процессе эксплуатации, при условии чистки светильников не реже 4-х раз в год;

Z = 1,1- коэффициент неравномерности освещения;

N -количество светильников;

h - коэффициент использования светового потока, выбирается из таблиц в зависимости от типа светильника, размеров помещения, коэффициентов отражения стен r с и потолка r п помещения, показателя помещения i ;

r п = 0.7 (цвет поверхности - белый);

r с = 0.5 (цвет поверхности - светлый);

Количество светильников в помещении можно определить по следующей формуле:

N=S/= 32/=6,3(шт).

Поскольку светильники расположены в два ряда, то их число выбираем четным.

Показатель помещения можно определить по формуле:

i=(A*B)/((A+B)*h)=(8*4)/((8+4)*2.25)=1,18

Тогда, на основании значений r п, r с и i по таблице выбираем h = 0,42.

Фсв=(300*32*1,5*1,18)/(6*0,42)=6743 лм.

Учитывая, что светильник рассчитан на 4 лампы, получим:

Фд = Фсв/4 =1686 лм - световой поток одной лампы.

По найденному значению светового потока можно определить тип и мощность лампы. Этому значению соответствует лампа ЛД40 мощностью 40 Вт со световым потоком 2100 лм. На практике допускается отклонение светового потока выбранной лампы от рассчитанного до ±20%, т.е. лампа выбрана верно.

В системе освещения используется 24 ламп по 40 Вт каждая. Таким образом, общая потребляемая мощность:

Р 0 = 24 * 40 = 960 Вт.

Учитывая, что в таких лампах потери мощности могут составлять до 25 %, рассчитаем запас мощности:

Р р = 960 * 0,25 = 240 Вт.

Тогда общая мощность сети должна быть:

Р = Р 0 * Рр= 960 +240= 1200Вт.

Схема размещения светильников представлена на рис 1.

Таким образом, система общего освещения, рассчитанная в данном дипломном проекте позволяет:

Обеспечить возможность нормальной деятельности людей в условиях отсутствия или недостаточности естественного освещения;

Обеспечить сохранность зрения;

Повысить производительность труда, безопасность работы;





Рис.1 Схема размещения светильников

2.11 Экологичность проекта

ПК не представляет опасности для окружающей среды. Дозы излучения, создаваемые ПК, малы по сравнению с излучениями других источников.

При работе вычислительной техники загрязнения окружающей среды не происходит, следовательно, специальных мероприятий по обеспечению экологичности не требуется.

На основании выявленных опасных и вредных факторов, а также рассмотренных методах борьбы с ними можно сделать заключение, что рассматриваемый проект не нарушает экологическое равновесие в окружающем его пространстве и может быть использован без каких-либо доработок и изменений.


Заключение

В настоящее время радиолокационные станции нашли широчайшее применение во многих сферах деятельности человека. Современная техника позволяет с большой точностью измерять координаты положения целей, следить за их движением, определять не только формы объектов, но и структуру их поверхности. Хотя радиолокационная техника разрабатывалась и развивалась в первую очередь для военных целей, ее преимущества позволили найти многочисленные важные применения радиолокации и в гражданских областях науки и техники; наиболее важным примером может служить управление воздушным движением.

С помощью РЛС в процессе УВД решаются задачи:

· Обнаружения и определения координат воздушных судов

· Контроля выдерживания экипажами воздушных судов линий заданного пути, заданных коридоров и времени прохождения контрольных точек, а также предупреждение опасных сближений воздушных судов

· Оценки метеообстановки по маршруту полета

· Коррекции местоположения воздушных судов, передачи на борт информации и указаний для вывода в заданную точку пространства.

В современных РЛС УВД используются самые последние достижения науки и техники. Элементной базой РЛС являются интегральные микросхемы. В них широко используются элементы вычислительной техники и, в частности, микропроцессоры, которые служат основой технической реализации адаптивных систем обработки радиолокационных сигналов.

Кроме того, к другим особенностям данных РЛС можно отнести:

· Применение цифровой системы СДЦ с двумя квадратурными каналами и двойным или тройным вычитанием, обеспечивающей коэффициент подавления помех от местных предметов до 40..45 дБ и коэффициент подпомеховой видимости до 28..32 дБ;

· Применение переменного периода повторения зондирующего сигнала для борьбы с помехами от целей, удаленных от РЛС на расстоянии превышающее максимальную дальность действия радиолокатора, и для борьбы со “слепыми” скоростями;

· Обеспечение линейной амплитудной характеристики приемного тракта до входа системы СДЦ с динамическим диапазоном по входному сигналу до 90..110 дБ и динамическим диапазоном системы СДЦ, равным 40 дБ;

· Повышение фазовой стабильности генераторных приборов приемника и передатчика РЛС и применение истинно когерентного принципа построения РЛС;

· Применение автоматического управления положением нижней кромки зоны обзора РЛС в вертикальной плоскости благодаря использованию двулучевой диаграммы направленности антенны и формированию взвешенной суммы сигналов верхнего и нижнего лучей.

Развитие РЛС УВД характеризуется прежде всего тенденцией непрерывного повышения помехозащищенности РЛС с учетов возможных изменений помеховой обстановки. Повышение точности РЛС обеспечивается в основном благодаря применению более совершенных алгоритмов обработки информации. Повышение надежности РЛС достигается благодаря широкому использованию интегральных микросхем и значительному повышению надежности механических узлов (антенны, опорно-поворотного устройства и вращающегося перехода), а также за счет применения аппаратуры встроенного автоматического контроля параметров РЛС.


Библиографический список

1. Бакулев П.А. Радиолокационные системы. - М.,: Радиотехника, 2004 г.

2. Радзиевский В.Г., Сирота А.А. Теоретические основы радиоэлектронной разведки. - М.,: Радиотехника, 2004 г.

3. Перунов Ю.М., Фомичев К.И., Юдин Л.М. Радиоэлектронное подавление информационных каналов систем управления оружием. – М.: Радиотехника, 2003 г.

4. Кошелев В.И. Теоретические основы радиоэлектронной борьбы. – Конспект лекций.

5. Основы системного проектирования радиолокационных систем и устройств: Методические указания по курсовому проектированию по дисциплине «Основы теории радиотехнических систем» / Рязан. гос. радиотехн. акад.; Сост.: В.И. Кошелев, В.А. Федоров, Н.Д. Шестаков. Рязань, 1995. 60 с.