Недопустимые дефекты сварных швов гост. Виды дефектов сварных соединений образовывавшиеся при сварке

При сварке различных металлических конструкций качество выполненных на них сварных соединений имеет особо важное значение.

Наряду с механическими свойствами и коррозионной стойкостью сварных соединений к числу важнейших факторов, определяющих работоспособность сварных конструкций, относится отсутствие дефектов в сварном шве, зоне сплавления и зоне термического влияния.

Дефекты сварных соединений при сварке плавлением подразделяются на:

Дефекты подготовки и сборки;

Дефекты формы шва;

Дефекты строения металла сварных соединений (наружные и внутренние).

Дефекты подготовки и сборки чаще всего обусловлены:

Нарушениями геометрии скоса кромок шва;

Непостоянством зазора между кромками по длине стыкуемых элементов;

Несовпадением плоскостей стыкуемых деталей.

Дефекты формы шва (подрезы, наплывы, прожоги, усадочные канавки и др.) прежде всего обусловлены:

Неравномерной шириной швов, образующихся при нарушении техники движения электродом;

Неравномерностью зазора кромок при сборке, неравномерностью выпуклостей по длине шва, местных утолщений и впадин (прежде всего они зависят от неудовлетворительного качества электродов при ручной сварке и нестабильности работы механизма автомата при автоматической сварке).

Для студентов сварочных специальностей необходимо четко знать характерные виды дефектов (наружные и внутренние), причины их образования и способы предупреждения и устранения; влияние различных дефектов на свойства сварного соединения.

Приведенные иллюстрации (схемы и фотографии) дефектов позволяют быстро и надежно визуально идентифицировать вид дефекта, установить причины появления и оперативно принять меры по его устранению.

Дефекты сварки плавлением классифицируют по месту расположения на поверхностные, внутренние и сквозные.

К поверхностным дефектам относят:

‑ непровары в корне шва;

Подрезы; наплывы;

Кратеры; занижение (ослабление) лицевой поверхности шва;

Вогнутость корня шва;

Смещение сваренных кромок;

Резкий переход от шва к основному металлу (неправильное сопряжение сварного шва);

Брызги металла; поверхностное окисление; поверхностные трещины.

К внутренним дефектам относят:

Поры; включения;

Оксидные плёнки;

Внутренние трещины;

Непровары по кромке с основным металлом и между отдельными слоями;

К сквозным дефектам относят трещины и прожоги.

Помимо дефектов – несплошностей к дефектам сварки плавлением относят: искажение формы соединения, связанное с деформацией, и несоответствие геометрических размеров сварного шва или точек, регламентированным значениям, установленным НТД (нормативно-технической документацией).



В ГОСТ 30242-97 приведены классификация, обозначения и краткое описание дефектов сварных соединений, даны трехзначное цифровое обозначение дефектов и четырехзначное обозначение их разновидностей, буквенное обозначение дефектов, наименование дефектов на русском, английском и французском языках, поясняющий текст, рисунки, дополняющие определения.

При выборе методов и средств контроля соединений, выполненных сваркой, необходимо иметь четкое представление о характере дефектов и причинах их появления. Наиболее характерные дефекты, возникающие при сварке плавлением, указаны в табл. 21.1.

Таблица 21.1. Дефекты, возникающие при сварке плавлением

Дефекты Определение дефекта (ГОСТ 2601-84) Причины образования дефектов Особенности дефекта и способы исправления и исключения его образования
Непровары: - в корне шва; - между отдельными слоями; - по кромке с основным металлом (ОМ). Дефект в виде местного несплавления вследствие неполного расплавления свариваемых кромок или поверхностей ранее выполненных валиков. - малая погонная энергия; - неудовлетворительная подготовка поверхностей; - неправильная форма разделки; - большая величина притупления; - малые зазоры; - смещение электрода; - некачественная зачистка шва после выполнения прохода. Наиболее характерны при сварке алюминиевых сплавах и под слоем флюса. Является концентраторами напряжений. Трудно выявляются в кольцевых швах трубопроводов. Исправление-удаление корневой части шва с последующей подваркой за один или несколько проходов.
Прожоги: - одиночные; - протяженные; - дискретные Дефект в виде сквозного отверстия, образовавшийся в результате вытекания сварочной ванны - большая погонная энергия; - увеличенный зазор; малая величина притупления; - большое смещение кромок; - коробление кромок и отставание их от подкладки при сварке Недопустимый дефект. Может быть устранен путем механической выборки (фрезами) и последующей заварки в вертикальном положении.

Продолжение таблицы 21.1.

Кратеры Дефекты в виде воронкообразного углубления, образовавшегося в результате внезапного прекращения сварки или быстрого отключения сварочного тока - на сварочном оборудовании отсутствует или выключена функция «заварки кратера». Низкая квалификация сварщика, нарушение техники сварки. Ослабление сечения. Сопровождается усадкой и трещинами усадочного происхождения. Концентратор напряжения. Исправление – удаление дефектного участка и заварка. При автоматической сварке используют технологические планки для вывода кратера или плавное отключение тока
Наплывы на сварном соединении Дефект в виде натекания жидкого металла на поверхность основного или ранее выполненного валика без сплавления с ним. - большой ток; - большая скорость сварки; - длинная дуга (повышенное напряжение); - смещение электрода; - большая скорость подачи присадочной проволоки; - наклон электрода (неправильное ведение). Возникает с лицевой стороны соединения или с обратной стороны из-за некачественного поджатия к подкладке и, как правило, при сварке в горизонтальном и вертикальном положении, а также на спуск и на подъём. Концентратор напряжения. Исправляется механической обработкой.
Подрезы зоны сплавления: - односторон- ний; - двухсторон-ний Дефекты в виде протяженного углубления вдоль линии сплавления основного металла и шва. - большой ток; - большая скорость; - длинная дуга; - наклон электрода (неправильное ведение). - Низкая квалификация сварщика, нарушение техники сварки. Как правило, возникает при сварке концентрированными источниками в режиме глубокого проплавления, а также при сварке угловых швов. Концентратор напряжения. Ослабление сечения. Исправление –механическая зачистка и подварка «ниточным» швом по всей длине подреза.

Продолжение таблицы 21.1.

Неплавное сопряжение сварного шва с ОМ Дефект в виде резкого перехода поверхности сварного шва к основному металлу. - несоблюдение техники сварки; - большая скорость подачи присадочной проволоки. Концентратор напряжения. Возникает при чрезмерной высоте усиления наружного шва. Исправление – обработка механическим способом.
Брызги металла Дефект в виде затвердевших капель жидкого электродного металла на поверхности сварного соединения. - несоблюдение техники и режимов сварки; - длинная дуга; - непрокаленные или некачественные электроды. Возникает при сварке толстопокрытыми электродами, при МП сварке в СО 2 , и электроннолучевой сварке с глубоким проплавлением. Исправление – механическая зачистка.
Вогнутость корня шва Дефект в виде углубления на обратной поверхности сварного одностороннего шва. - неправильная подготовка и сборка кромок под сварку; -несоблюдение техники сварки. Возникают при сварке стыковых и угловых шва в потолочном положении. Ослабление сечения шва. Исправление – подварка со стороны ослабления шва.
Занижение шва Дефект в виде провисания сварного шва. - большой зазор; - большой угол разделки кромок; - несоблюдение техники сварки. Возникает при большой погонной энергии сварки; Исправление – подварка на более мягких режимах.
Смещение сваренных кромок Дефект в виде несовпадения сваренных кромок по высоте из-за некачественной сборки сварного соединения. - нарушение технологии сборки; - не проведен пооперационный контроль. Возникает, как правило, при сварке стыковых соединений. Концентратор напряжения. Исправление – подварка с обеспечением плавного перехода к основному металлу.

Продолжение таблицы 21.1.

Свищ сварного шва Дефект в виде несквозного углубления в сварном шве. - некачественный основной металл; - нарушение защиты сварочной ванны. Сопровождает поры и трещины, выходящие на поверхность. Наиболее часто возникают при МП сварке в СО. Исправление – разделка с последующей подваркой.
Поверхностное окисление сварного соединения Дефект в виде окисной пленки с различными цветами побежалости на поверхности сварного соединения. - малый расход защитного газа; - наличие примесей в защитном газе; - загрязнение поверхности сопла; - неправильно подобранный диаметр сопла и расстояние его от поверхности металла; - отсутствие дополнительных защитных козырьков. Возникает при сварке высоколегированных сталей и активных металлов. Исправление – механическая зачистка и химическая обработка поверхности сварного соединения.
Трещины: - поверхност-ные; - внутренние; - сквозные; - продольные; - поперечные; - разветвлён-ные. Дефект в виде разрыва в объёме сварного шва или по линии сплавления с основным металлом. Могут выходить в околошовную зону. - жесткая конструкция изделия; - сварка в жестко закрепленных приспособлениях; - большой время между сваркой и термообработкой; - большая скорость охлаждения; - ошибка в проектировании сварного шва (близко расположенные концентраторы); - нарушение технологии (температура подогрева, порядок наложения швов); - нарушение защиты; - некачественный основной металл (ОМ). Наиболее опасный и недопустимый дефект. Исправление – предварительная засверловка концов трещины. Выборка трещины на всю глубину с обеспечением необходимой подготовки кромок (разделки) с последующей подваркой за один или несколько проходов. После исправления необходимо проведение неразрушающего контроля отремонтированного участка.

Окончание таблицы 21.1.

Поры сварного шва: -одиночные; -рассеянные; -скопления; -цепочка. Дефект сварного шва в виде полости округлой или продолговатой формы заполненной газом. - влажный флюс; - отсыревшие электроды; - некачественная подготовка свариваемых кромок и поверхности сварочной проволоки; - увеличенный диаметр электрода; - длинная дуга; - увеличенная скорость сварки; - некачественная защита; - некачественный основной металл. Как правило, возникает при сварке алюминиевых и титановых сплавов, в глубоких стыковых швах, при затруднении дегазации. Ослабление сечения. Снижение герметичности. Исправление – единичные допустимые поры оставляют, во всех остальных случаях дефектный участок выбирается до качественного ОМ с последующей подваркой за один или несколько проходов.
Включения: - шлаковые; - оксидные; - нитридные; - вольфрамо-вые. Дефекты в виде неметаллических частиц или инородного металла в металле шва. - некачественная подготовка поверхности; - некачественный основной металл; - нарушение технологии сварки; - нарушение защиты. Имеют сферическую или продолговатую форму, а также располагаются в виде прослоек. Концентраторы напряжения. Исправление – удаление с последующей подваркой.

В соответствии с указанным стандартом дефекты подразделяются на шесть групп, в основном по их форме и месту расположения в сварном соединении (табл. 21.2):

1. трещины;

3. твердые включения;

4. несплавления и непровары;

5. нарушения формы шва;

6. прочие дефекты.

Таблица 21.2. Виды дефектов (в соответствии с ГОСТ 30242-97)


Продолжение таблицы 21.2.

Микротрещина Трещина, имеющая микроскопические размеры, которую обнаруживают физическими методами не менее чем при 50-кратном увеличении.
Продольная трещина Трещина, ориентированная параллельно оси сварного шва. Она может располагаться в металле сварного шва, на границе сплавления, в зоне термического влияния, в основном металле.
Поперечная трещина Трещина, ориентированная поперек оси сварного шва. Она может располагаться в металле сварного шва, в зоне термического влияния, в основном металле.
Радиальные трещины Трещины, радиально расходящиеся из одной точки. Они могут быть в металле сварного шва, в зоне термического влияния, в основном металле.
Трещина в кратере Трещина в кратере сварного шва, которая может быть продольной, поперечной, звездообразной.
Раздельные трещины Группа трещин, которые могут располагаться в металле сварного шва, в зоне термического влияния, в основном металле.
Разветвленные трещины Группа трещин, возникших из одной трещины. Они могут располагаться в металле сварного шва, в зоне термического влияния, в основном металле.
Группа 2. Поры
Газовая полость Полость произвольной формы, образованная газами, задержанными в расплавленном металле, которая не имеет углов.
Газовая пора Газовая полость обычно бывает сферической формы
Равномерно распределенная пористость Группа газовых пор, распределенных равномерно в металле сварного шва. Следует отличать от цепочки пор.
Скопление пор Группа газовых полостей (более двух), расположенных кучно с расстоянием между ними менее трех максимальных размеров большей из полостей.
Цепочка пор Ряд газовых пор, расположенных в линию, обычно параллельно оси сварного шва, с расстоянием между ними менее трех максимальных размеров большей из пор.
Продолговатая полость Несплошность, вытянутая вдоль оси сварного шва. Длина несплошности не менее чем в два раза превышает ее высоту
Свищ Трубчатая полость в металле сварного шва, вызванная выделением газа. Форма и положение свища определяются режимом затвердевания и источником газа. Обычно свищи группируются в скопления и распределяются елочкой
Поверхностная пора Газовая пора, которая нарушает сплошность поверхности сварного шва.
Усадочная раковина Полость, образующаяся вследствие усадки во время затвердевания.
Кратер Усадочная раковина в конце валика сварного шва, не заваренная до или во время выполнения последующих проходов.

Продолжение таблицы 21.2.

Группа 3. Твердые включения
Твердое включение Твердые инородные вещества металлического или неметаллического происхождения в металле сварного шва.
Шлаковое включение Шлак, попавший в металл сварного шва. В зависимости от условий образования такие включения могут быть линейными или разобщенными.
Флюсовое включение Флюс, попавший в металл сварного шва. В зависимости от условий образования такие включения могут быть линейными, разобщенными или прочими.
Оксидное включение Оксид металла, попавший в металл сварного шва во время затвердевания.
Металлическое включение Частица инородного металла, попавшая в металл сварного шва. Различают частицы вольфрама, меди или другого металла.
Группа 4. Несплавления и непровары
Несплавление Отсутствие соединения между металлом сварного шва и основным металлом или между отдельными валиками сварного шва.
Непровар (неполный провар) Несплавление основного металла по всей длине шва или на участке, возникающее вследствие неспособности расплавленного металла проникнуть в корень соединения (непровар в корне шва).
Группа 5. Нарушение формы шва
Нарушение формы Отклонение формы наружных поверхностей сварного шва или геометрии соединения от установленного НТД значения.
Подрез непрерывный Продольное протяженное углубление на наружной поверхности валика сварного шва по его краям, образовавшееся при сварке.
Усадочная канавка Подрез со стороны корня одностороннего сварного шва, вызванный усадкой по границе сплавления.
Превышение выпуклости стыкового шва Избыток наплавленного металла на лицевой стороне стыкового шва сверх установленного значения. Является концентратором напряжений.
Превышение выпуклости углового шва Избыток наплавленного металла на лицевой стороне углового шва (на всей длине или на участке) сверх установленного значения.
Превышение проплава Избыток наплавленного металла на обратной стороне стыкового шва сверх установленного значения.
Местное превышение Местный избыточный проплав сверх установленного значения.
Неправильный профиль сварного шва Отклонение размеров шва от заданных НТД значений.
Наплыв Избыток наплавленного металла сварного шва, натекший на поверхность основного металла, но не сплавленный с ним.
Линейное смещение Смещение между двумя свариваемыми элементами, при котором их поверхности располагаются параллельно, но не на требуемом уровне.

Окончание таблицы 21.2.

Угловое смещение Смещение между двумя свариваемыми элементами, при котором их поверхности располагаются под углом, отличающимся от заданного.
Натек Металл сварного шва, осевший вследствие действия силы тяжести и не имеющий сплавления с соединяемой поверхностью.
Прожог Вытекание металла сварочной ванны, в результате которого образуется сквозное отверстие в сварном шве.
Неполностью заполненная разделка кромок Продольная непрерывная или прерывистая канавка на поверхности сварного шва из-за недостаточного заполнения присадочным материалом необходимой площади поперечного сечения.
Чрезмерная асимметрия углового шва Превышение размера одного катета над другим.
Неравномерная ширина шва ОтклонениеНеравномерная ширина шва на различных его участках, которая отличается от заданных НТД значений. от
Неровная поверхность Грубая неравномерность формы поверхности усиления шва по длине.
Вогнутость корня шва Неглубокая канавка со стороны корня одностороннего сварного шва, образовавшаяся вследствие усадки металла сварочной ванны при ее кристаллизации.
Пористость в корне сварного шва Наличие пор в корне сварного шва вследствие возникновения пузырьков во время затвердевания металла.
Возобновление Местная неровность поверхности в месте возобновления сварки.
Группа 6. Прочие дефекты
Прочие дефекты Все дефекты, которые не могут быть включены в группы 1-5.
Случайная дуга (поджог) Местное повреждение поверхности основного металла, примыкающего к сварному шву, возникшее в результате случайного зажигания или горения дуги.
Брызги металла Капли наплавленного или присадочного металла, образовавшиеся во время сварки и прилипшие к поверхности металла.
Поверхностные задиры (вырывы) Повреждение поверхности, вызванное удалением временно приваренного приспособления (технологические планки, струбцины и т. д.).
Утонение металла Уменьшение толщины металла до значения менее допустимого при механической обработке или воздействии коррозионной среды.

Трещины. Виды трещин

Трещины относятся к наиболее опасным дефектам и по всем нормативно техническим документам в сварных соединениях они считаются недопустимым дефектом.

Трещина это несплошность в сварном соединении в виде щелевого разрыва шва или прилегающих к нему зон.

Трещины в соответствии с ГОСТ 30242-97 подразделяются по ориентации к шву на:

Продольные, ориентированные параллельно оси сварного шва и располагающиеся в металле сварного шва, на границе сплавления, в зоне термического влияния и в основном металле (рис. 21.1 и21.2);

Поперечные, ориентированные поперек оси сварного шва и располагающиеся в металле сварного шва, в зоне термического влияния, в основном металле;

Радиальные - радиально расходящиеся из одной точки и располагающиеся в металле сварного шва, в зоне термического влияния, в основном металле.

По температуре образования трещины бывают следующих видов:

Горячие, возникающие в интервале температур кристаллизации жидкого металла;

Холодные, возникающие при температурах ниже интервала кристаллизации металла;

Трещины повторного нагрева.

Рис. 21.1. Продольные и поперечные трещины в металле шва

Рис. 21.2. Расположение трещин по сечению шва при электрошлаковой сварке:

а – по оси шва; б – между ветвями столбчатых кристаллов

Рис. 21.3. Трещины в изломе шва: а – выходящие на поверхность шва; б – не выходящие на поверхность шва

Рис. 21.4. Расположение трещин по сечению шва (дуговая сварка): а – трещины, не выходящие на поверхность шва; б – трещины, выходящие на поверхность шва

В сварочном производстве принято выделять следующие типы дефектов (рисунок 3.15):

  1. Дефекты подготовки и сборки изделий под сварку.
  2. Дефекты формы шва.
  3. Наружные и внутренние дефекты.

Дефекты подготовки и сборки

Характерными видами являются неправильный угол скоса кромок в швах с V–, X– и U–образной разделкой, слишком большое или малое притупление по длине стыкуемых кромок; непостоянство зазора между кромками; несовпадение стыкуемых плоскостей ведущих к смещению кромок, слишком большой зазор между кромками, расслоения и загрязнения кромок.

Форма и размеры сварных швов обычно задаются техническими условиями, указываются на чертежах и регламентируются стандартами: конструктивные элементы b – ширина шва, высота усиления С и глубина провара h.

Основные дефекты – неравномерная ширина и высота усиления, местные бугры и седловины. Эти виды дефектов наиболее характерны при ручной электродуговой сварке.

Такие дефекты снижают прочность соединения и косвенно указывают на возможность образования внутренних дефектов.

Дефекты сварных соединений характеризуются как недопустимые, так и допустимые. Недопустимые дефекты вновь перевариваются.

Готовые сварные соединения прежде всего подвергаются внешнему осмотру на выявление внешних дефектов (трещины, ослабление шва, наплывы, подрезы, прожоги, местная ноздреватость, пористость и др.).

Трещины: горячие (технологические) и холодные. Горячие – в жестко закрепленных конструкциях легированных сталей (особенно при недостаточном качестве – Smax). Холодные – закалочная теория (С max) С экв =6,25 и водородная.

Наплывы образуются в результате стекания расплавленного металла на нерасплавленный металл.

Подрезы образуются по краям шва в основном металле (глубиной от десятых долей до нескольких мм). Прожоги – дефекты в виде сквозного отверстия в сварном шве (первый корневой слой или тонкий металл, или стекание через большой зазор).

Наличие скрытых внутренних дефектов в сварных соединениях контролируется различными физическими методами: просвечивание рентгеновскими лучами, просвечивание – лучами радиоактивных изотопов (кобальт – 60, цезий – 137), магнитографический метод, метод магнитного порошка и ультразвуковая дефектоскопия, контроль течеисканием.

Каждый из этих методов имеет свои специфические особенности, обуславливающие его чувствительность и область применения.

Рисунок 3.15 – Виды дефектов сварных швов и причины их возникновения

Испытание изделий на герметичность (ограничение проникновения жидкости или газа), или контроль течеисканием, выполняют применением легко проникающих сред (жидкостей или газов), хорошо различных визуально или с помощью приборов.

К внутренним дефектам относят поры, шлаковые включения, непровары, несплавления и трещины. Поры образуются вследствие загрязнений, влажности флюса или покрытия электродов, недостаточной защиты в среде защитного газа. Непровары из-за плохой зачистки кромок от окалины, ржавчины, шлака, блуждания дуги из-за магнитного дутья; неправильный выбор режима сварки (силы тока и напряжения дуги, скорости сварки) и т.п.

Кроме контроля качества внешним осмотром и с применением различных физических методов проверяется соответствие механических свойств и хим.состава сварных соединений требованиям технических условий и технологических инструкций по сварке на образцах – свидетелях.

Контроль качества исходных материалов, технологии и квалификации сварщиков

Для обеспечения высокого качества сварных соединений необходим контроль исходных материалов (основного металла, электродов, сварочной проволоки, флюсов, защитных газов и т.д.). Качество исходных материалов устанавливают на основании сертификатных данных, для чего определяют соответствие требованиям данного технологического процесса сварки изделий. При наличии внешних дефектов, а также при отсутствии сертификатов исходные материалы допускают только после проведения химического анализа, механических испытаний и испытаний на свариваемость.

При контроле основного металла особое внимание обращают на зоны, подлежащие к сварке – они должны быть очищены от грязи, масла, краски, ржавчины.

Прокат проверяют на наличие расслоений, окалины, равномерности толщины листа и т.д.

Электроды, сварочную проволоку проверяют выполняя пробную сварку для установления качества материалов по показателям характера плавления, легкость отделения шлака и качество формирования сварного шва. Они должны удовлетворять требованиям действующих ГОСТов.

Свариваемость – это свойство металла образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленной конструкцией и условиями эксплуатации изделия. Свариваемость контролируют обычно в двух случаях: при выборе материалов и разработке технологии сварки, например, при стадии проекта или при технологической подготовке производства. Вторая проверка связана с возможными отклонениями показателей свойств основного металла, проволоки, партии электродов и флюсов от сертификатных значений.

Большое значение для обеспечения качества имеет контроль в процессе производства сварочных работ. Сюда относятся отмеченные выше методы контроля, включая контроль исправности сварочного оборудования и сварочных приспособлений и соблюдения установленных режимов сварки (по току, напряжению и скорости сварки). Такой контроль осуществляют технологи, мастера и другие инженерно–технические работники ответственные за работу данного участка, цеха, предприятия.

Тщательный планомерный контроль подготовки изделий под сварку и процесса сварки не будет эффективным без проверки уровня подготовленности сварщиков. Например, при сварке труб на монтаже более 70% брака возникает по вине сварщиков.

Для проверки квалификации сварщиков администрация предприятия организует квалификационную комиссию с участием инспектора Госгортехнадзора. Испытания должны проходить периодически. При этом проводят испытания по теории и практике сварочных работ с включением сварки образцов соответствующего изделия. Образцы сваривают в тех же условиях и пространственных положениях, что и реальное изделие (например, трубы – поворотные и неповоротные стыки). После внешнего осмотра сваренные образцы проверяют предусмотренными методами неразрушающего контроля, а также подвергают механическим испытаниям.

Количество образцов для испытаний регламентируются “Правилами аттестации сварщиков”.

ГОСТ 30242-97

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ДЕФЕКТЫ СОЕДИНЕНИЙ ПРИ СВАРКЕ
МЕТАЛЛОВ ПЛАВЛЕНИЕМ

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

Предисловие

1 РАЗРАБОТАН Институтом электросварки им. Е.О. Патона Национальной Академии наук Украины; Межгосударственным техническим комитетом по стандартизации МТК 72 «Сварка и родственные процессы» ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации 2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11 от 23 апреля 1997 г.) За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика Азгосстандарт
Республика Армения Армгосстандарт
Республика Беларусь Госстандарт Республики Беларусь
Кыргызская Республика Кыргызстандарт
Республика Молдова Молдовастандарт
Российская Федерация Госстандарт России
Республика Таджикистан Таджикгосстандарт
Туркменистан Главгосинспекция «Туркменстандартлары»
Республика Узбекистан Узгосстандарт
Украина Госстандарт Украины
3 Настоящий стандарт полностью соответствует ИСО 6520-82 «Классификация дефектов швов при сварке металлов плавлением (с пояснениями)» 4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 2 марта 2001 г. № 115-ст межгосударственный стандарт ГОСТ 30242-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г. 5 ВВЕДЕН ВПЕРВЫЕ

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ДЕФЕКТЫ СОЕДИНЕНИЙ ПРИ СВАРКЕ МЕТАЛЛОВ ПЛАВЛЕНИЕМ

Классификация, обозначение и определения

Imperfections in metallic fusion welds.

Classification, designation and definitions

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт устанавливает классификацию, определения и условные обозначения дефектов швов, зон термического влияния и основного металла при сварке металлов плавлением.

2 Классификация дефектов

2.1 Дефекты при сварке металлов плавлением образуются вследствие нарушения требований нормативных документов к сварочным материалам, подготовке, сборке и сварке соединяемых элементов, термической и механической обработке сварных соединений и конструкции в целом. 2.2 В настоящем стандарте дефекты классифицированы на шесть следующих групп: 1 - трещины; 2 - полости, поры; 3 - твердые включения; 4 - несплавления и непровары; 5 - нарушение формы шва; 6 - прочие дефекты, не включенные в вышеперечисленные группы.

3 Наименование, определение и обозначение дефектов

Наименование, определение и обозначение дефектов приведены в таблице 1. В таблице приведены: - в графе 1 - трехзначное цифровое обозначение каждого дефекта или четырехзначное цифровое обозначение его разновидностей; - в графе 2 - буквенное обозначение дефекта, используемое в сборниках справочных радиограмм Международного института сварки (МИС); - в графе 3 - наименование дефекта на русском, английском и французском языках; - в графе 4 - определение и/или поясняющий текст; - в графе 5 - рисунки, дополняющие определение при необходимости.

Таблица 1

Обозначение дефекта

Наименование дефекта

Определение и/или пояснение дефекта

Рисунки сварных швов и соединений с дефектами

цифровое

используемое МИС

Группа 1. Трещины

Трещины en cracks fr fissures Несплошность, вызванная местным разрывом шва, который может возникнуть в результате охлаждения или действия нагрузок Микротрещина en microfissure (microcrack) fr microfissure Трещина, имеющая микроскопические размеры, которую обнаруживают физическими методами не менее чем при пятидесятикратном увеличении Продольная трещина en longitudinal crack fr fissure longitudinale Трещина, ориентированная параллельно оси сварного шва. Она может располагаться: в металле сварного шва; на границе сплавления; в основном металле Поперечная трещина en transverse crack fr fissure transversale Трещина, ориентированная поперек оси сварного шва. Она может располагаться:

в металле сварного шва; в зоне термического влияния; в основном металле Радиальные трещины en radiation cracks fr fissures rayonnantes Трещины, радиально расходящиеся из одной точки. Они могут быть:

в металле сварного шва; в зоне термического влияния; в основном металле Примечание - Трещины этого типа, расходящиеся в разные стороны, известны как звездоподобные трещины Трещина в кратере en crater cracks fr fissure de cratere Трещина в кратере сварного шва, которая может быть:

продольной; поперечной; звездообразной Раздельные трещины en group of disconnected cracks fr reseau de fissures marbrees Группа трещин, которые могут располагаться:

в металле сварного шва; в зоне термического влияния; в основном металле Разветвленные трещины en branching cracks fr fissure ramifiees Группа трещин, возникших из одной трещины. Они могут располагаться:

в металле сварного шва; в зоне термического влияния; в основном металле

Группа 2. Поры

Газовая полость en gas cavity fr soufflure Полость произвольной формы, образованная газами, задержанными в расплавленном металле, которая не имеет углов Газовая пора en gas pore fr soufflure spheroidale Газовая полость обычно сферической формы

Равномерно распределенная пористость en uniformly distributed porosity fr souflures spheroidales Группа газовых пор, распределенных равномерно в металле сварного шва. Следует отличать от цепочки пор (2014)

Скопление пор en localized (clustered) fr nid de soufflures Группа газовых полостей (три или более), расположенных кучно с расстоянием между ними менее трех максимальных размеров большей из полостей

Цепочка пор en linear porosity fr soufflures allignees (ou en chapelet) Ряд газовых пор, расположенных в линию, обычно параллельно оси сварного шва, с расстоянием между ними менее трех максимальных размеров большей из пор

Продолговатая полость en elongated cavity fr soufflure allongee Несплошность, вытянутая вдоль оси сварного шва. Длина несплошности не менее чем в два раза превышает высоту

Свищ en worm-hole fr soufflure vermiculaire Трубчатая полость в металле сварного шва, вызванная выделением газа. Форма и положение свища определяются режимом затвердевания и источником газа. Обычно свищи группируются в скопления и распределяются елочкой

Поверхностная пора en surface por fr piqure Газовая пора, которая нарушает сплошность поверхности сварного шва

Усадочная раковина en shrinkage fr retassure Полость, образующаяся вследствие усадки во время затвердевания Кратер en crater pipe fr retassure de cratere Усадочная раковина в конце валика сварного шва, не заваренная до или во время выполнения последующих проходов

Группа 3. Твердые включения

Твердое включение en solid inclusion fr inclusion solide Твердые инородные вещества металлического или неметаллического происхождения в металле сварного шва. Включения, имеющие хотя бы один острый угол, называются остроугольными включениями

Шлаковое включение en slag inclusion fr inclusion de laitier Шлак, попавший в металл сварного шва. В зависимости от условий образования такие включения могут быть:

линейными; разобщенными; прочими Флюсовое включение en flux inclusion fr inclusion de dlux Флюс, попавший в металл сварного шва. В зависимости от условий образования такие включения могут быть: линейными; разобщенными; прочими Оксидное включение en oxide inclusion fr inclusion d’oxyde Оксид металла, попавший в металл сварного шва во время затвердевания Металлическое включение en metallic inclusion fr inclusion metallique Частица инородного металла, попавшая в металл сварного шва. Различают частицы из: вольфрама; меди; другого металла

Группа 4. Несплавление и непровар

Несплавление en lack of fusion (incomplete fusion) fr manque de fusion (collage) Примечание - В некоторых странах употребляют термины « collage noir » и « collage blanc » в зависимости от того, имеются или отсутствуют в местах несплавления оксидные включения Отсутствие соединения между металлом сварного шва и основным металлом или между отдельными валиками сварного шва. Различают несплавления:

по боковой стороне; между валиками; в корне сварного шва Непровар (неполный провар) en lack of penetration (incomplete penetration) fr manque de penetration Несплавление основного металла по всей длине шва или на участке, возникающее вследствие неспособности расплавленного металла проникнуть в корень соединения

Группа 5. Нарушение формы шва

Нарушение формы en imperfect shape fr forme defectueuse Отклонение формы наружных поверхностей сварного шва или геометрии соединения от установленного значения Подрез непрерывный en continious undercut fr caniveau continu Углубление продольное на наружной поверхности валика сварного шва, образовавшееся при сварке

Подрез непрерывный en intermittent undercut fr morsure: caniveau discontinu

Усадочная канавка en shrinkage groove fr caniveau a la racine Подрез со стороны корня одностороннего сварного шва, вызванный усадкой по границе сплавления (см. также 512)

Превышение выпуклости стыкового шва en excess weld metal fr surepaisseur excessive Избыток наплавленного металла на лицевой стороне стыкового шва сверх установленного значения

Превышение выпуклости углового шва en excessive convexity fr convexite excessive Избыток наплавленного металла на лицевой стороне углового шва (на всей длине или на участке) сверх установленного значения

Превышение проплава en excessive penetration fr exes de penetration Избыток наплавленного металла на обратной стороне стыкового шва сверх установленного значения

Местное превышение проплава en local excess penetration fr exces local de penetration Местный избыточный проплав сверх установленного значения Неправильный профиль сварного шва en incorrect weld profile fr default de raccordement Угол α между поверхностью основного металла и плоскостью, касательной к поверхности сварного шва, менее установленного значения

Наплав en overlap fr debordement Избыток наплавленного металла сварного шва, натекший на поверхность основного металла, но не сплавленный с ним

Линейное смещение en linear misalignment fr defaut d’alignement Смещение между двумя свариваемыми элементами, при котором их поверхности располагаются параллельно, но не на требуемом уровне

Угловое смещение en angular misalignment fr deformation angulaire Смешение между двумя свариваемыми элементами, при котором их поверхности располагаются под углом, отличающимся от требуемого

Натек en sagging fr effondrement Металл сварного шва, осевший вследствие действия силы тяжести и не имеющий сплавления с соединяемой поверхностью.

В зависимости от условий это может быть:

натек при горизонтальном положении сварки; натек в нижнем или потолочном положении сварки; натек в угловом сварном шве; натекание в шве нахлесточного соединения Прожог en burn through fr trou Вытекание металла сварочной ванны, в результате которого образуется сквозное отверстие в сварном шве

Неполностью заполненная разделка кромок en incompletely filled groove fr manque d’epaisseur Продольная непрерывная или прерывистая канавка на поверхности сварного шва из-за недостаточности присадочного металла при сварке

Чрезмерная асимметрия углового шва en excessive asymmetry of fillet weld fr defaut de symetrie de soudure d’angle Чрезмерное превышение размеров одного катета над другим

Неравномерная ширина шва en irregular width fr largeur irreguliere Отклонение ширины от установленного значения вдоль сварного шва Неровная поверхность en irregular surface fr surface irreguliere Грубая неравномерность формы поверхности усиления шва по длине Вогнутость корня шва en root concavity fr retassure a la racine Неглубокая канавка со стороны корня одностороннего сварного шва, образовавшаяся вследствие усадки (см. также 5013)

Пористость в корне сварного шва en root porosity fr rochage Наличие пор в корне сварного шва вследствие возникновения пузырьков во время затвердевания металла Возобновление en poor restart fr mauvaise reprise Местная неровность поверхности в месте возобновления сварки

Группа 6. Прочие дефекты

Прочие дефекты en miscellaneous imperfections fr defauts divers Все дефекты, которые не могут быть включены в группы 1-5 Случайная дуга en stray arc fr coup d’arc Местное повреждение поверхности основного металла, примыкающего к сварному шву, возникшее в результате случайного горения дуги Брызги металла en spatter fr projection (ou perles) Капли наплавленного или присадочного металла, образовавшиеся во время сварки и прилипшие к поверхности затвердевшего металла сварного шва или околошовной зоны основного металла Вольфрамовые брызги en tungsten spatter fr projection de tungstene Частицы вольфрама, выброшенные из расплавленной зоны электрода на поверхность основного металла или затвердевшего металла сварного шва Поверхностные задиры en torn surface fr dechirure locale ou arrachement local Повреждение поверхности, вызванное удалением временно приваренного приспособления Утонение металла en underflushing fr moulage exceessif Уменьшение толщины металла до значения менее допустимого при механической обработке
Ключевые слова: дефекты, трещины, поры, твердые включения, несплавление, непровар, нарушение формы шва

Общие сведения и организация контроля

По ГОСТ 15467-79 качество продукции есть совокупность свойств продукции, обусловливающих ее пригодность удовлетво­рять определенные потребности в соответствии с ее назначением. Качество сварных изделий зависит от соответствия материала тех­ническим условиям, состояния оборудования и оснастки, правиль­ности и уровня отработки технологической документации, соблюдения технологической дисциплины, а также квалификации работающих. Обеспечить высокие технические и эксплуатацион­ные свойства изделий можно только при условии точного выпол­нения технологических процессов и их стабильности. Особую роль здесь играют различные способы объективного контроля как про­изводственных процессов, так и готовых изделий. При правильной организации технологического процесса контроль должен быть его неотъемлемой частью. Обнаружение дефектов служит сигналом не только к отбраковке продукции, но и оперативной корректировке технологии.

Сварные конструкции контролируют на всех этапах их изготов­ления. Кроме того, систематически проверяют приспособления и оборудование. При предварительном контроле подвергаются про­верке основные и вспомогательные материалы, устанавливается их соответствие чертежу и техническим условиям.

После заготовительных работ детали подвергают чаще всего наружному осмотру, т.е. проверяют внешний вид детали, качество поверхности, наличие заусенцев, трещин, забоин и т.п., а также измеряют универсальными и специальными инструментами, шаб­лонами, с помощью контрольных приспособлений. Особенно тща­тельно контролируют участки, подвергающиеся сварке. Профиль кромок, подготовленных под сварку плавлением, проверяют спе­циальными шаблонами, а качество подготовки поверхности - с помощью оптических приборов или специальными микрометрами.

Во время сборки и прихватки проверяют расположение деталей друг относительно друга, величину зазоров, расположение и размер прихваток, отсутствие трещин, прожогов и других дефектов в местах прихваток и т.д. Качество сборки и прихватки определяют главным образом наружным осмотром и обмером.

Наиболее ответственным моментом является текущий контроль выполнения сварки. Организация контроля сварочных работ может производиться в двух направлениях: контролируют сами процессы сварки либо полученные изделия.

Контроль процессов позволяет предотвратить появление систе­матических дефектов и особенно эффективен при автоматизиро­ванной сварке (автоматическая и механизированная дуговая, электрошлаковая и др.). Существуют следующие способы контроля сварочных процессов.

Контроль по образцам технологических проб. В этом случае периодически изготовляют образцы соединений из материала той же марки и толщины, что и свариваемое изделие, и подвергают их всесторонней проверке: внешнему осмотру, испытаниям на проч­ность соединений, просвечиванию рентгеновскими лучами, метал­лографическому исследованию и т.д. К недостаткам такого способа контроля следует отнести некоторое различие между образцом и изделием, а также возможность изменения сварочных условий с момента изготовления одного образца до момента изготовления следующего.

Контроль с использованием обобщающих параметров, имеющих прямую связь с качеством сварки, например использование дила­тометрического эффекта в условиях точечной контактной сварки. Однако в большинстве случаев сварки плавлением трудно или не всегда удается выявить наличие обобщающего параметра, позволя­ющего достаточно надежно контролировать качество соединений.

Контроль параметров режима сварки. Так как в большинстве случаев определенных обобщающих параметров для процессов сварки плавлением нет, то на практике контролируют параметры, непосредственно определяющие режим сварки. При дуговой сварке такими параметрами в первую очередь являются сила тока, дуговое напряжение, скорость сварки, скорость подачи проволоки и др. Недостаток такого подхода заключается в необходимости контро­лирования многих параметров, каждый из которых в отдельности не может характеризовать непосредственно уровень качества полу­чаемых соединений.

Контроль изделий производят пооперационно или после окон­чания изготовления. Последним способом обычно контролируют несложные изделия. Качество выполнения сварки на изделии оце­нивают по наличию наружных или внутренних дефектов. Развитие физики открыло большие возможности для создания высокоэффек­тивных методов дефектоскопии с высокой разрешающей способ­ностью, позволяющих проверять без разрушения качество сварных соединений в ответственных конструкциях.

В зависимости от того, нарушается или не нарушается це­лостность сварного соединения при контроле, различают неразрушающие и разрушающие методы контроля.

Дефекты сварных соединений и причины их возникновения

В процессе образования сварных соединений в металле шва и зоне термического влияния могут возникать различные отклонения от установленных норм и технических требований, приводящие к ухудшению работоспособности сварных конструкций, снижению их эксплуатационной надежности, ухудшению внешнего вида из­делия. Такие отклонения называют дефектами. Дефекты сварных соединений различают по причинам возникновения и месту их расположения (наружные и внутренние). В зависимости от причин возникновения их можно разделить на две группы. К первой группе относятся дефекты, связанные с металлургическими и тепловыми явлениями, происходящими в процессе образования, формирования и кристаллизации сварочной ванны и остывания сварного соединения (горячие и холодные трещины в металле шва и околошовной зоне, поры, шлаковые включения, неблагоприятные изменения свойств металла шва и зоны термического влияния).

Ко второй группе дефектов, которые называют дефектами фор­мирования швов, относят дефекты, происхождение которых связано в основном с нарушением режима сварки, неправильной подготов­кой и сборкой элементов конструкции под сварку, неисправностью оборудования, недостаточной квалификацией сварщика и другими нарушениями технологического процесса. К дефектам этой группы относятся несоответствия швов расчетным размерам, непровары, подрезы, прожоги, наплывы, незаваренные кратеры и др. Виды дефектов приведены на рис. 1. Дефектами формы и размеров сварных швов являются их неполномерность, неравномерные ши­рина и высота, бугристость, седловины, перетяжки и т.п.


Рисунок 1 - Виды дефектов сварных швов:

а - ослабление шва. б - неравномерность ширины, в - наплыв, г - подрез, с - непровар, с - трещины и поры, ж - внутренние трещины и поры, з - внутренний непровар, и - шлаковые включения

Эти дефекты снижают прочность и ухудшают внешний вид шва. При­чины их возникновения при механизированных способах сварки - колебания напряжения в сети, проскальзывание проволоки в пода­ющих роликах, неравномерная скорость сварки из-за люфтов в механизме перемещения сварочного автомата, неправильный угол наклона электрода, протекание жидкого металла в зазоры, их неравномерность по длине стыка и т.п. Дефекты формы и размеров швов косвенно указывают на возможность образования внутренних дефектов в шве.

Наплывы образуются в результате натекания жидкого металла на поверхность холодного основного металла без сплавления с ним. Они могут быть местными - в виде отдельных застывших капель, а также иметь значительную протяженность вдоль шва. Чаще всего наплывы образуются при выполнении горизонтальных сварных швов на вертикальной плоскости. Причины образования наплы­вов - большой сварочный ток, слишком длинная дуга, неправиль­ный наклон электрода, большой угол наклона изделия при сварке на спуск. При выполнении кольцевых швов наплывы образуют­ся при недостаточном или излишнем смещении электрода с зенита. В местах наплывов часто могут выявляться непровары, трещины и др.

Подрезы представляют собой продолговатые углубления (канав­ки), образовавшиеся в основном металле вдоль края шва. Они возникают в результате большого сварочного тока и длинной дуги. Основной причиной подрезов при выполнении угловых швов яв­ляется смещение электрода в сторону вертикальной стенки. Это вызывает значительный разогрев металла вертикальной стенки и его стекание при оплавлении на горизонтальную стенку. Подрезы приводят к ослаблению сечения сварного соединения и концент­рации в нем напряжений, что может явиться причиной разрушения.

Прожоги - это сквозные отверстия в шве, образованные в результате вытекания части металла ванны. Причинами их образо­вания могут быть большой зазор между свариваемыми кромками, недостаточное притупление кромок, чрезмерный сварочный ток, недостаточная скорость сварки. Наиболее часто прожоги образуют­ся при сварке тонкого металла и выполнении первого прохода многослойного шва. Прожоги могут также образовываться в резуль­тате недостаточно плотного поджатая сварочной подкладки или флюсовой подушки.

Непроваром называют местное несплавление кромок основного металла или несплавление между собой отдельных валиков при многослойной сварке. Непровары уменьшают сечение шва и вызы­вают концентрацию напряжений в соединении, что может резко снизить прочность конструкции. Причины образования непроваров - плохая зачистка металла от окалины, ржавчины и загрязне­ний, малый зазор при сборке, большое притупление, малый угол скоса кромок, недостаточный сварочный ток, большая скорость сварки, смещение электрода от центра стыка. Непровары выше допустимой величины подлежат удалению и последующей заварке.

Трещины , также как и непровары, являются наиболее опасными дефектами сварных швов. Они могут возникать как в самом шве, так и в околошовной зоне и располагаться вдоль или поперек шва. По своим размерам трещины могут быть макро- и микроскопиче­скими. На образование трещин влияет повышенное содержание углерода, а также примеси серы и фосфора.

Шлаковые включения , представляющие собой вкрапления шла­ка в шве, образуются в результате плохой зачистки кромок деталей и поверхности сварочной проволоки от оксидов и загрязнений. Они возникают при сварке длинной дугой, недостаточном сварочном токе и чрезмерно большой скорости сварки, а при многослойной сварке - недостаточной зачистке шлаков с предыдущих слоев. Шлаковые включения ослабляют сечение шва и его прочность.

Газовые поры появляются в сварных швах при недостаточной полноте удаления газов при кристаллизации металла шва. Причины пор - повышенное содержание углерода при сварке сталей, загряз­нения на кромках, использование влажных флюсов, защитных газов, высокая скорость сварки, неправильный выбор присадочной проволоки. Поры могут располагаться в шве отдельными группами, в виде цепочек или единичных пустот. Иногда они выходят на поверхность шва в виде воронкообразных углублений, образуя так называемые свищи. Поры также ослабляют сечение шва и его прочность, сквозные поры приводят к нарушению герметичности соединений.

Микроструктура шва и зоны термического влияния в значитель­ной степени определяет свойства сварных соединений и характе­ризует их качество.

К дефектам микроструктуры относят следующие: повышенное содержание оксидов и различных неметаллических включений, микропоры и микротрещины, крупнозернистость, перегрев, пе­режог металла и др. Перегрев характеризуется чрезмерным укрупнением зерна и огрублением структуры металла. Более опасен пережог - наличие в структуре металла зерен с окисленными границами. Такой металл имеет повышенную хрупкость и не поддаетсяисправлению. Причиной пережога является плохая защита сварочной ванны при сварке, а также сварка на чрезмерно большой силе тока.

Методы неразрушающего контроля сварных соединений

К неразрушающим методам контроля качества сварных сое­динений относят внешний осмотр, контроль на непроницаемость (или герметичность) конструкций, контроль для обнаружения де­фектов, выходящих на поверхность, контроль скрытых и внутренних дефектов.

Внешний осмотр и обмеры сварных швов - наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром сварных швов выявляют наружные дефек­ты: непровары, наплывы, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т.п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.

Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое - увеличивает внутренние напряжения и дефор­мации. Размеры сечения готового шва проверяют по его параметрам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту, размер выпуклости со стороны корня шва, в угловом - измеряют катет. Замеренные параметры должны соот­ветствовать ТУ или ГОСТам. Размеры сварных швов контролируют обычно измерительными инструментами или специальными шаб­лонами.

Внешний осмотр и обмеры сварных швов не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить их сомнительные участки, которые могут быть проверены более точными способами.

Контроль непроницаемости сварных швов и соединений. Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости (герметичности) для различных жидкостей и газов. Учитывая это, во многих сварных конструкциях (емкости, трубопроводы, химическая аппаратура и" т.д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончания монтажа или изготовления конст­рукции. Дефекты, выявленные внешним осмотром, устраняются до начала испытаний. Непроницаемость сварных швов контролируют следующими методами: капиллярным (керосином), химическим (аммиаком), пузырьковым (воздушным или гидравлическим давле­нием), вакуумированием или газоэлектрическими течеискателями.

Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности керосина подниматься по капиллярным ходам - сквозным порам и трещинам. В процессе испытания сварные швы покрываются водным раство­ром мела с той стороны, которая более доступна для осмотра и выявления дефектов. После высушивания окрашенной поверхности с обратной стороны шов обильно смачивают керосином. Неплот­ности швов выявляют по наличию на меловом покрытии следов проникшего керосина. Появление отдельных пятен указывает на поры и свищи, полос - сквозных трещин и непроваров в шве. Благодаря высокой проникающей способности керосина обнару­живаются дефекты с поперечным размером 0,1 мм и менее.

Контроль аммиаком основан на изменении окраски некоторых индикаторов (раствор фенолфталеина, азотнокислой ртути) под воздействием щелочей. В качестве контролирующего реагента применяется газ аммиак. При испытании на одну сторону шва укладывают бумажную ленту, смоченную 5%-ным раствором индикатора, а с другой стороны шов обрабатывают смесью аммиака с воздухом. Аммиак, проникая через неплотности сварного шва, окрашивает индикатор в местах залегания дефектов.

Контроль воздушным давлением (сжатым воз­духом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением, а также резервуары, цистерны и т.п. Это испытание проводят с целью проверки общей герметичности сварного изделия. Малогабаритные изделия полностью погружают в ванну с водой, после чего в него подают сжатый воздух под давлением, на 10 - 20% превышающим рабочее. Крупногабаритные конструкции после подачи внутреннего давления по сварным швам покрывают пенным индикатором (обычно раствор мыла). О нали­чии неплотностей в швах судят по появлению пузырьков воздуха. При испытании сжатым воздухом (газами) следует соблюдать пра­вила безопасности.

Контроль гидравлическим давлением при­меняют при проверке прочности и плотности различных сосудов, котлов, паро-, водо- и газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием свар­ное изделие полностью герметизируют водонепроницаемыми за­глушками. Сварные швы с наружной поверхности тщательно просушивают обдувом воздухом. Затем изделие заполняют водой под избыточным давлением, в 1,5 - 2 раза превышающим рабочее, и выдерживают в течение заданного времени. Дефектные места определяют по проявлению течи, капель или увлажнению поверх­ности швов.

Вакуумному контролю подвергают сварные швы, которые невозможно испытать керосином, воздухом или водой и доступ к которым возможен только с одной стороны. Его широко применяют при проверке сварных швов днищ резерву­аров, газгольдеров и других листовых конструкций. Сущ­ность метода заключается в создании вакуума на одной стороне контролируемого участка сварного шва и реги­страции на этой же стороне шва проникновения воздуха через имеющиеся неплотно­сти. Контроль ведется с по­мощью переносной вакуум-камеры, которую устанавли­вают на наиболее доступную сторону сварного соедине­ния, предварительно смо­ченную мыльным раствором (рис. 2).

Рисунок 2 - Вакуумный контроль шва: 1 – вакуумметр, 2 - резиновое уплотнение, 3 - мыльный раствор, 4 - камера.

В зависимости от формы контролируемого изделия и типа соединения могут приме­няться плоские, угловые и сферические вакуум-камеры. Для созда­ния вакуума в них применяют специальные вакуум-насосы.

Люминесцентный контроль и контроль методом красок , называемый также капиллярной дефек­тоскопией, проводят с помощью специальных жидкостей, которые наносят на контролируемую поверхность изделия. Эти жидкости, обладающие большой смачивающей способностью, проникают в мельчайшие поверхностные дефекты - трещины, поры, непровары. Люминесцентный контроль основан на свойстве некоторых веществ светиться под действием ультрафиолетового облучения. Перед контролем поверхности шва и околошовной зоны очищают от шлака и загрязнений, на них наносят слой проникающей жид­кости, которая затем удаляется, а изделие просушивается. Для обнаружения дефектов поверхность облучают ультрафиолетовым излучением - в местах дефектов следы жидкости обнаруживаются по свечению.

Контроль методом красок заключается в том, что на очищенную поверхность сварного соединения наносится смачи­вающая жидкость, которая под действием капиллярных сил прони­кает в полость дефектов. После ее удаления на поверхность шва наносится белая краска. Выступающие следы жидкости обозначают места расположения дефектов.

Контроль газоэлектрическими течеискателям и применяют для испытания ответственных сварных конструкций, так как такие течеискатели достаточно сложны и дорогостоящи. В качестве газа-индикатора в них используется гелий. Обладая высокой проникающей способностью, он способен про­ходить через мельчайшие несплошности в металле и регистрируется течеискателем. В процессе контроля сварной шов обдувают или внутренний объем изделия заполняют смесью газа-индикатора с воздухом. Проникающий через неплотности газ улавливается щу­пом и анализируется в течеискателе.

Для обнаружения скрытых внутренних дефектов применяют следующие методы контроля.

Магнитные методы контроля основаны на об­наружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или поме­щая внутрь соленоида. Требуемый магнитный поток можно создать и пропусканием тока по виткам (3 - 6 витков) сварочного провода, наматываемого на контролируемую деталь. В зависимости от спо­соба обнаружения потоков рассеяния различают следующие методы магнитного контроля: метод магнитного порошка, индукционный и магнитографический. При методе магнитного порошка на повер­хность намагниченного соединения наносят магнитный порошок (окалина, железные опилки) в сухом виде (сухой способ) или суспензию магнитного порошка в жидкости (керосин, мыльный раствор, вода - мокрый способ). Над местом расположения дефек­та создадутся скопления порошка в виде правильно ориентирован­ного магнитного спектра. Для облегчения подвижности порошка изделие слегка обстукивают. С помощью магнитного порошка выявляют трещины, невидимые невооруженным глазом, внутрен­ние трещины на глубине не более 15 мм, расслоение металла, а также крупные поры, раковины и шлаковые включения на глубине не более 3 - 5 мм. При индукционном методе маг­нитный поток в изделии наводят электромагнитом переменного то­ка. Дефекты обнаруживают с по­мощью искателя, в катушке кото­рого под воздействием поля рассе­яния индуцируется ЭДС, вызы­вающая оптический или звуковой сигнал на индикаторе. При магнитографическом мето­де (рис. 3) поле рассеяния фик­сируется на эластичной магнитной ленте, плотно прижатой к поверх­ности соединения. Запись воспроизводится на магнитографическом дефектоскопе. В результате срав­нения контролируемого соединения с эталоном делается вывод о качестве соединения.

Рисунок 3 - Магнитная запись дефек­тов на ленту: 1 - подвижный электромагнит, 2 - де­фект шва, 3 - магнитная лента.

Радиационные методы контроля являются на­дежным и широко распространенными методами контроля, осно­ванными на способности рентгеновского и гамма-излучения про­никать через металл. Выявление дефектов при радиационных ме­тодах основано на разном поглощении рентгеновского или гамма-излучения участками металла с дефектами и без них. Сварные соединения просвечивают специальными аппаратами. С одной стороны шва на некотором расстоянии от него помещают источник излучения, с противоположной стороны плотно прижимают кассету с чувствительной фотопленкой (рис. 4). При просвечивании лучи проходят через сварное соединение и облучают пленку. В местах, где имеются поры, шлаковые включения, непровары, крупные трещины, на пленке образуются темные пятна. Вид и размеры дефектов определяют сравнением пленки с эталонными снимками. Источниками рентгеновского излучения служат специальные аппа­раты (РУП-150-1, РУП-120-5-1 и др.).



Рисунок 4 - Схема радиационного просвечивания швов: а - рентгеновское, б - гамма-излучением: 1 - источник излу­чения, 2 - изделие, 3 - чувствительная пленка

Рентгенопросвечиванием целесообразно выявлять дефекты в деталях толщиной до 60 мм. Наряду с рентгенографированием (экспозицией на пленку) приме­няют и рентгеноскопию, т.е. получение сигнала о дефектах при просвечивании металла на экран с флуоресцирующим покрытием. Имеющиеся дефекты в этом случае рассматривают на экране. Такой способ можно сочетать с телеви­зионными устройствами и конт­роль вести на расстоянии.

При просвечивании сварных соединений гамма-излучением источником излучения служат ра­диоактивные изотопы: кобальт-60, тулий-170, иридий-192 и др. Ам­пула с радиоактивным изотопом помещается в свинцовый контей­нер. Технология выполнения просвечивания подобна рентгеновско­му просвечиванию. Гамма-излучение отличается от рентгеновского большей жесткостью и меньшей длиной волны, поэтому оно может проникать в металл на большую глубину. Оно позволяет просвечи­вать металл толщиной до 300 мм. Недостатками просвечивания гамма-излучением по сравнению с рентгеновским являются мень­шая чувствительность при просвечивании тонкого металла (менее 50 мм), невозможность регулирования интенсивности излучения, большая опасность гамма-излучения при неосторожном обращении с гамма-аппаратами.

Ультразвуковой контроль основан на способно­сти ультразвуковых волн проникать в металл на большую глубину и отражаться от находящихся в нем дефектных участков. В процессе контроля пучок ультразвуковых колебаний от вибрирующей пла­стинки-щупа (пьезокристалла) вводится в контролируемый шов. При встрече с дефектным участком ультразвуковая волна отража­ется от него и улавливается другой пластинкой-щупом, которая преобразует ультразвуковые колебания в электрический сигнал (рис. 5).

Рисунок 5 - Ультразвуковой контроль швов: 1 - генератор УЗК, 2 - щуп, 3 - усилитель, 4 - экран.

Эти колебания после их усиления подаются на экран электронно-лучевой трубки дефектоскопа, которые свидетельству­ют о наличии дефектов. По характеру импульсов судят о протяжен­ности дефектов и глубине их залегания. Ультразвуковой контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления и предварительной обработки поверхности шва.

Ультразвуковой контроль имеет следующие преимущества: высокая чувствительность (1 - 2%), позволяющая обнаруживать, измерять и определять местонахождение дефектов площадью 1 - 2 мм 2 ; большая проникающая способность ультразвуковых волн, позволяющая контролировать детали большой толщины; возможность контроля сварных соединений с односторонним под­ходом; высокая производительность и отсутствие громоздкого обо­рудования. Существенным недостатком ультразвукового контроля является сложность установления вида дефекта. Этот метод приме­няют и как основной вид контроля, и как предварительный с последующим просвечиванием сварных соединений рентгеновским или гамма-излучением.

Методы контроля с разрушением сварных соединений

К этим методам контроля качества сварных соединений отно­сятся механические испытания, металлографические исследования, специальные испытания с целью получения характеристик сварных соединений. Эти испытания проводят на сварных образцах, выре­заемых из изделия или из специально сваренных контрольных соединений - технологических проб, выполненных в соответствии с требованиями и технологией на сварку изделия в условиях, соответствующих сварке изделия.

Целью испытаний является: оценка прочности и надежности сварных соединений и конструкций; оценка качества основного и присадочного металла; оценка правильности выбранной техноло­гии; оценка квалификации сварщиков.

Свойства сварного соединения сопоставляют со свойствами основного металла. Результаты считаются неудовлетворительными, если они не соответствуют заданному уровню.

Механические испытания проводятся по ГОСТ 6996-66, предус­матривающему следующие виды испытаний сварных соединений и металла шва: испытание сварного соединения в целом и металла разных его участков (наплавленного металла, зоны термического влияния, основного металла) на статическое растяжение, статисти­ческий изгиб, ударный изгиб, стойкость против старения, измере­ние твердости.

Контрольные образцы для механических испытаний выполняют определенных размеров и формы.

Испытаниями на статическое.растяжение определяют проч­ность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и попереч­ными швами со снятым усилением шва заподлицо с основным металлом. Испытаниями на ударный изгиб, а также разрыв опре­деляют ударную вязкость сварного соединения. По результатам определения твердости судят о структурных изменениях и степени подкалки металла при охлаждении после сварки.

Основной задачей металлографических исследований являются установление структуры металла и качества сварного соединения, выявление наличия и характера дефектов. Металлографические исследования включают в себя макро- и микроструктурный методы анализа металлов.

При макроструктурном методе изучают макрошли­фы и изломы металла невооруженным глазом или с помощью лупы. Макроисследование позволяет определить характер и расположение видимых дефектов в разных зонах сварных соединений.

При микроструктурном анализе исследуется струк­тура металла при увеличении в 50 - 2000 раз с помощью оптических микроскопов. Микроисследование позволяет установить качество металла, в том числе обнаружить пережог металла, наличие оксидов, засоренность металла шва неметаллическими включениями, вели­чину зерен металла, изменение состава его, микроскопические трещины, поры и некоторые другие дефекты структуры. Методикаизготовления шлифов для металлографических исследований за­ключается в вырезке образцов из сварных соединений, шлифовке, полировке и травлении поверхности металла специальными травителями. Металлографические исследования дополняются измере­нием твердости и при необходимости химическим анализом металла сварных соединений. Специальные испытания проводят с целью получения характеристик сварных соединений, учитывающих усло­вия эксплуатации сварных конструкций: определение коррозион­ной стойкости для конструкций, работающих в различных агрес­сивных средах; усталостной прочности при циклических нагружениях; ползучести при эксплуатации в условиях повышенных температур и др.

Применяют также и методы контроля с разрушением изделия. В ходе таких испытаний устанавливают способность конструкций выдерживать заданные расчетные нагрузки и определяют разруша­ющие нагружения, т.е. фактический запас прочности. При испыта­ниях изделий с разрушением схема нагружения их должна соответ­ствовать условиям работы изделия при эксплуатации. Число изде­лий, подвергающихся испытаниям с разрушением, устанавливается техническими условиями и зависит от степени их ответственности, системы организации производства и технологической отработан­ности конструкции.

Время чтения: ≈12 минут

Не важно, какую технологию вы выбрали для выполнения сварочных работ. Дефекты могут возникнуть в любом случае, что при , что при сварке . Появление дефектов связано либо с неопытностью сварщика, либо с неправильно выбранным режимом сварки, либо с недостаточно тщательным контролем качества.

Поэтому важно предотвращать дефекты и контроль качества сварных соединений должен проводится после выполнения каждой сварочной операции. В этой статье мы подробно расскажем, какие существуют распространенные дефекты сварных швов. И какие методы контроля можно использовать, чтобы обнаружить их.

Любой опытный сварщик скажет вам, что существуют многочисленные виды дефектов сварных швов. Их можно разделить на две категории - наружные и внутренние. Наружные дефекты сварных швов можно обнаружить прямо на поверхности шва с помощью специального инструмента (например, лупы) или хорошего зрения. Внутренние дефекты сварных швов визуально не видны и для их обнаружения нужно использовать особые методики контроля качества. О них мы расскажем ближе к концу. А пока дефекты.

В рамках этой статьи мы не будем перечислять все возможные дефекты, а расскажем только о самых распространенных. Итак, ниже наша краткая классификация дефектов сварных швов.

Непровар

Непровар в сварном шве - один из самых часто встречающихся дефектов у новичков. Представляет собой небольшой участок с недостаточно проваренным металлом. Основные причины образования непроваров - слишком длинная сварочная дуга, недостаточная сила тока или обе ошибки одновременно.

У новичков непровары образуются в том случае, если была выполнена неправильная или если сварка велась слишком быстро. Как не трудно догадаться, чтобы предотвратить непровар сварного шва нужно подобрать оптимальный режим сварки, варить не слишком быстро и на короткой дуге.

Подрез

Если вы когда-либо варили тавровый или нахлесточный шов, то наверняка могли заметить небольшие углубления вдоль сторон сварного валика. Это и есть подрезы. Частая причина образования подрезов - слишком быстрая сварка или неправильно подобранное напряжение сварочной дуги. Также подрезы порой возникают из-за слишком длинной дуги.

Некоторые новички спрашивают: «Допускаются ли подрезы сварных швов?». Да, но только в очень сложных конструкциях, где подрезов не избежать. В подобных ситуациях подрезы называют просто «допустимые дефекты сварных швов». В остальных случаях это недопустимые дефекты.

Наплыв

Наплыв в сварном шве в 95% случаев свидетельствует о том, что вы неправильно настроили или недостаточно тщательно зачистили кромки. Очевидно, что для предотвращения образования дефекта нужно правильно настроить силу сварочного тока и немного повысить напряжение дуги.

Прожог

Прожог сварного шва - это сквозное отверстие в сварном соединении, которое вы можете обнаружить невооруженным глазом. Прожоги образуются из-за медленной сварки. В одном месте концентрируется слишком большая температура и металл плавится больше, чем должен. Главная опасность прожогов - существенное снижение прочности шва.

Понизьте сварочный ток и ускорьте формирование шва. Только так вы сможете предотвратить появление прожогов. Уделите особое внимание, если варите алюминий. У него очень высокая теплопроводность, при этом низкая температура плавления. Так что получить прожог на алюминиевой заготовке проще простого.

Кратер

Кратер - это воронка небольшого размера, расположенная прямо на валике шва. Чаще всего в самом его конце. Образуется из-за резкого обрыва дуги. Ведите дугу плавно и оканчивайте сварку постепенно. Если на вашем сварочном аппарате есть специальный режим предотвращения образования кратеров, то включите его.

Горячая или холодная трещина

Трещины в сварных швах - также один из самых часто встречающихся дефектов. Трещины бывают холодными и горячими. Горячие образуются во время сварки, а холодные - после. Горячие трещины образовываются при несовместимости электрода/присадочной проволоки и свариваемого металла. Иногда трещины могут образоваться при попытке заварить кратер, о котором мы говорили выше. Проверяйте, чтобы состав присадочного материала и металла был идентичен.

С холодными трещинами все проще. Они образовываются только в том случае, если шов слишком хрупкий и не выдерживает механической нагрузки. Единственный способ предотвратить появление холодных трещин - соблюдать технологию сварки и работать профессионально. Горячие и холодные трещины могут быть как внутренними (скрытыми от глаз), так и наружными.

Поры

Что такое пора в сварке? Пора (а чаще всего поры) - это небольшие углубления в структуре шва. Могут быть поверхностными или внутренними. Представьте муравейник, который пронизывают множественные ходы. Вот то же самое происходит и со швом. Поры без сомнения можно назвать самым частым дефектом из всех возможных.

Если в ходе процесса образовались поры в сварном шве, значит вы с самого начала все делали неправильно. Скорее всего, вы недостаточно тщательно зачистили кромки и не защитили шов от попадания кислорода. А подобные ошибки совершают только те, кто только-только начал свое знакомство со сваркой. На работайте на сквозняке и проверяйте качество электродов/исправность горелки/исправность системы подачи газа.

Методы контроля качества

Что ж, теперь вы знаете самые распространенные дефекты сварных соединений и причины их возникновения. Теперь давайте поговорим о . Мы расскажем вам о самых часто применяемых и эффективных. Это визуально-измерительный контроль, радиационный и ультразвуковой контроль.

Визуально-измерительный контроль

(ВИК) - это самый простой и самый старый способ оценки качества сварного соединения. Из названия понятно, что в ходе этого контроля используется визуальное наблюдение и измерительные приборы. Под визуальным наблюдением подразумевается простой осмотр шва невооруженным глазом или с помощью лупы. В отдельных случаях используют микроскопы. А в качестве измерительных инструментов чаще всего применяют обычные линейки. Это самый доступный и недорогой метод контроля, поскольку инструменты стоят недорого и такому контролю можно обучить самого сварщика, выполняющего работу. Предприятию даже не нужно нанимать отдельных специалистов для проведения этого контроля.

Сейчас в магазинах продаются специальные наборы со всеми необходимыми инструментами и даже подробно инструкцией, как проводить контроль. Вам достаточно один раз прочесть брошюру, все запомнить и вы уже можете провести такой контроль самостоятельно. Но, несмотря на все плюсы, есть у ВИК большой недостаток - значительное влияние человеческого фактора на результат контроля. Вся ответственность ложится на плечи человека. И если он в силу объективных или субъективных причин не сможет выполнить контроль качественно, то есть вероятность брака.

Радиационный контроль

(его также называют радиографическим) - очень интересный метод контроля, который основан на применение рентгеновских лучей. Да, как при рентген-диагностике в поликлинике. Деталь повещается в специальный аппарат (или аппарат устанавливается на деталь), затем сквозь металл пропускают рентгеновское излучение и на выходе получают снимок, на котором видны все дефекты сварки. Эта технология наверняка известна вам давно.

Нетрудно догадаться, что подобная диагностика крайне эффективна. На снимке видны малейшие дефекты, которые невозможно обнаружить любым другим способом. Особенно, если снимок выполняется с применением компьютера, на котором потом можно детально рассмотреть все изъяны сварки. Но при работе с рентгенографом необходимо соблюдать повышенную технику безопасности. Частицы радиации могут заражать воздух, из-за чего он становится токопроводимым. А о возможном вреде для здоровья и говорить не приходится. Так что к выполнению радиационного контроля должны быть допущены только хорошо обученные сотрудники.

Ультразвуковой контроль

Ультразвуковая дефектоскопия сварных швов (он же ультразвуковой контроль качества или просто УЗК сварных швов) - метод контроля, который во многом схож с выше описанным радиационным. Только вот вместо рентгеновских лучей здесь используются ультразвуковые волны. Для фиксации результата используется ультразвуковой дефектоскоп для контроля сварных соединений.

Суть его работы проста. На поверхность шва посылаются ультразвуковые волны, которые проходят сквозь металл. Проходят не полностью, часть лучей отражается и возвращается обратно. Если у шва есть какой-либо дефект, то отразившиеся и вернувшиеся назад волны будут ослаблены и искажены. Проще говоря, они будут отличаться от тех, что были пущены вначале проведения контроля. Все эти изменения как раз и фиксирует дефектоскоп.

Ультразвуковой контроль используется очень часто. Для его проведения можно установить большой стационарный дефектоскоп в отдельном кабинете, а можно приобрести компактную модель для выездной диагностики. И эта компактная модель сможет дать вполне объективный результата. С помощью дефектоскопа можно не только узнать местонахождение дефекта, но и его размеры. Но нужно учитывать, что дефектоскопы стоят дорого и для работы с ними нужно дополнительно обучать персонал. Или искать специалиста «на стороне».

Вместо заключения

Дефекты сварных швов и соединений бывают разными, но суть всегда одна - они так или иначе нарушают эксплуатационные характеристики готового изделия. Чтобы их избежать необходимо как можно больше практиковаться, правильно настраивать режим сварки и не забывать о контроле качества. Проведение ультразвукового контроля занимает считанные минуты, а в результате вы получаете объективную картину и можете трезво оценить качество своей работы.