Понижающий dc преобразователь простая схема. Повышающий преобразователь напряжения DC DC

Входные напряжения до 61 В, выходные напряжения от 0.6 В, выходные токи до 4 А, возможность внешней синхронизации и настройки частоты, а также подстройки тока ограничения, подстройка времени плавного запуска, комплексные защиты нагрузки, широкий рабочий диапазон температур – все эти особенности современных источников питания достижимы при помощи новой линейки DC/DC-преобразователей производства .

В настоящий момент номенклатура микросхем импульсных регуляторов производства компании STMicro (рисунок 1) позволяет создавать источники питания (ИП) со входными напряжениями до 61 В и выходными токами до 4 А.

Задача преобразования напряжения не всегда проста. Каждое конкретное устройство предъявляет свои требования к регулятору напряжения. Иногда главную роль играет цена (потребительская электроника), габариты (портативная электроника), эффективность (устройства с батарейным питанием) или даже скорость разработки изделия. Эти требования зачастую противоречат друг другу. По этой причине не существует идеального и универсального преобразователя напряжения.

В настоящее время применяется несколько типов преобразователей: линейные (стабилизаторы напряжения), импульсные DC/DC-преобразователи, схемы с переносом заряда и даже источники питания на гальванических изоляторах.

Однако наиболее распространенными остаются линейные регуляторы напряжения и понижающие импульсные DC/DC-преобразователи. Основное отличие функционирования этих схем видно из названия. В первом случае силовой ключ работает в линейном режиме, во втором – в ключевом. Основные достоинства, недостатки и области применения этих схем приведены ниже.

Особенности работы линейного регулятора напряжения

Принцип работы линейного регулятора напряжения хорошо известен. Классический интегральный стабилизатор μA723 был разработан еще в 1967 году Р. Видларом. Несмотря на то, что электроника с тех пор ушла далеко вперед, принципы функционирования остались практически неизменными .

Стандартная схема линейного регулятора напряжения состоит из ряда основных элементов (рисунок 2): силового транзистора VT1, источника опорного напряжения (ИОН), схемы компенсационной обратной связи на операционном усилителе (ОУ). Современные регуляторы могут содержать дополнительные функциональные блоки: схемы защиты (от перегрева, от перегрузки по току), схемы управления питанием и др.

Принцип работы таких стабилизаторов достаточно прост. Схема обратной связи на ОУ сравнивает величину опорного напряжения с напряжением выходного делителя R1/R2. На выходе ОУ формируется рассогласование, определяющее напряжение «затвор-исток» силового транзистора VT1. Транзистор работает в линейном режиме: чем больше напряжение на выходе ОУ, тем меньше напряжение «затвор-исток», и тем больше сопротивление VT1.

Такая схема позволяет компенсировать все изменения входного напряжения. Действительно, предположим, что входное напряжение Uвх увеличилось. Это вызовет следующую цепочку изменений: Uвх увеличилось → Uвых увеличится → напряжение на делителе R1/R2 возрастет → выходное напряжение ОУ увеличится → напряжение «затвор-исток» уменьшится → сопротивление VT1 увеличится → Uвых уменьшится.

В результате при изменении входного напряжения выходное напряжение меняется незначительно.

При уменьшении выходного напряжения происходят обратные изменения значений напряжений.

Особенности работы понижающего DC/DC-преобразователя

Упрощенная схема классического понижающего DC/DC-преобразователя (преобразователь I типа, buck-converter, step-down converter) состоит из нескольких основных элементов (рисунок 3): силового транзистора VT1, схемы управления (СУ), фильтра (Lф-Cф), обратного диода VD1 .

В отличие от схемы линейного регулятора транзистор VT1 работает в ключевом режиме.

Цикл работы схемы состоит из двух фаз: фазы накачки и фазы разряда (рисунки 4…5).

В фазе накачки транзистор VT1 открыт и через него протекает ток (рисунок 4). Происходит запасание энергии в катушке Lф и конденсаторе Сф.

В фазе разряда транзистор закрыт, ток через него не протекает. Катушка Lф выступает в качестве источника тока. VD1 – диод, который необходим для протекания обратного тока.

В обеих фазах к нагрузке прикладывается напряжение, равное напряжению на конденсаторе Сф.

Приведенная схема обеспечивает регулирование выходного напряжения при изменении длительности импульса:

Uвых = Uвх × (tи/T)

Если величина индуктивности мала, ток разряда через индуктивность успевает достичь нуля. Такой режим называют режимом прерывистых токов. Он характеризуется увеличением пульсаций тока и напряжения на конденсаторе, что приводит к ухудшению качества выходного напряжения и росту шумов схемы. По этой причине режим прерывистых токов используется редко.

Существует разновидность схемы преобразователя, в которой «неэффективный» диод VD1 заменен на транзистор. Этот транзистор открывается в противофазе с основным транзистором VT1. Такой преобразователь называется синхронным и имеет больший КПД.

Достоинства и недостатки схем преобразования напряжений

Если бы одна из приведенных схем обладала абсолютным превосходством, то вторую бы благополучно забыли. Однако этого не происходит. Это значит, что обе схемы имеют преимущества и недостатки. Анализ схем стоит проводить по широкому кругу критериев (таблица 1).

Таблица 1. Преимущества и недостатки схем регуляторов напряжения

Характеристика Линейный регулятор Понижающий DC/DC-преобразователь
Типовой диапазон входных напряжений, В до 30 до 100
Типовой диапазон выходных токов сотни мА единицы А
КПД низкий высокий
Точность установки выходного напряжения единицы % единицы %
Стабильность выходного напряжения высокая средняя
Генерируемый шум низкий высокий
Сложность схемной реализации низкая высокая
Сложность топологии ПП низкая высокая
Стоимость низкая высокая

Электрические характеристики. Для любого преобразователя основными характеристиками являются КПД, ток нагрузки, диапазон входного и выходного напряжений.

Значение КПД для линейных регуляторов невелико и обратно пропорционально входному напряжению (рисунок 6). Это связано с тем, что все «лишнее» напряжение падает на транзисторе, работающем в линейном режиме. Мощность транзистора выделяется в виде тепла. Низкий КПД приводит к тому, что диапазон входных напряжений и выходных токов линейного регулятора относительно невелики: до 30 В и до 1 А.

КПД импульсного регулятора значительно выше и меньше зависит от входного напряжения. При этом не редкостью являются входные напряжения более 60 В и нагрузочные токи более 1 А.

Если используется схема синхронного преобразователя, в котором неэффективный обратный диод заменен транзистором, то КПД будет еще выше.

Точность и стабильность выходного напряжения. Линейные стабилизаторы могут иметь чрезвычайно высокую точность и стабильность параметров (доли процента). Зависимость выходного напряжения от изменения входного и от тока нагрузки не превышает единиц процентов.

Импульсный регулятор по принципу функционирования изначально имеет те же источники погрешности, что и линейный регулятор. Кроме того, на отклонение выходного напряжения может существенно сказываться величина протекающего тока.

Шумовые характеристики. Линейный регулятор обладает умеренной шумовой характеристикой. Существуют низкошумящие прецизионные регуляторы, используемые в высокоточной измерительной технике.

Импульсный стабилизатор сам по себе является мощным источником помех, так как силовой транзистор работает в ключевом режиме. Генерируемые помехи делятся на кондуктивные (передающиеся по линиям питания) и индуктивные (передаются через непроводящие среды).

От кондуктивных помех избавляются при помощи фильтров нижних частот. Чем выше рабочая частота преобразователя, тем проще избавиться от помех. В измерительных схемах импульсный регулятор часто используют совместно с линейным стабилизатором. В этом случае уровень помех значительно сокращается.

Избавиться от вредного воздействия индуктивных помех гораздо сложнее. Эти помехи возникают в катушке индуктивности и передаются по воздуху и непроводящим средам. Для их устранения используют экранированные индуктивности, катушки на тороидальном сердечнике. При разводке платы применяют сплошную заливку полигоном земли и/или даже выделяют отдельный слой земли в многослойных платах. Кроме того, сам импульсный преобразователь максимально удаляется от измерительных схем.

Эксплуатационные характеристики. С точки зрения простоты схемной реализации и разводки печатной платы линейные регуляторы предельно просты. Кроме самого интегрального стабилизатора требуется всего пара конденсаторов.

Импульсный преобразователь потребует как минимум внешнего L-C-фильтра. В ряде случаев требуется внешний силовой транзистор и внешний обратный диод. Это приводит к необходимости расчетов и моделирования, а топология печатной платы существенно усложняется. Дополнительное усложнение платы происходит из-за требования к ЭМС.

Стоимость. Очевидно, что в силу большого количества внешних компонентов импульсный преобразователь будет иметь большую стоимость.

В качестве вывода можно определить преимущественные области применения обоих типов преобразователей:

  • линейные регуляторы могут применяться в маломощных низковольтных схемах с высокими точностью, стабильностью и требованиями к малым уровням шумов. Примером могут быть измерительные и прецизионные схемы. Кроме того, малые габариты и низкая стоимость итогового решения могут идеально подойти для портативной электроники и бюджетных устройств.
  • импульсные регуляторы идеально подойдут для мощных низко- и высоковольтных схем в автомобильной, промышленной и бытовой электронике. Высокий КПД зачастую делает использование DC/DC безальтернативным для портативных устройств и устройств с батарейным питанием.

Иногда возникает необходимость использовать линейные регуляторы при высоких входных напряжениях. В таких случаях можно воспользоваться стабилизаторами производства компании STMicroelectronics, обладающими рабочими напряжениями более 18 В. (таблица 2).

Таблица 2. Линейные регуляторы STMicroelectronics с высоким входным напряжением

Наименование Описание Uвх макс, В Uвых ном, В Iвых ном, А Собственное
падение, В
35 5, 6, 8, 9, 10, 12, 15 0.5 2
Прецизионный регулятор на 500 мА 40 24 0.5 2
регулятор на 2 А 35 0.225 2 2
, Подстраиваемый регулятор 40 0.1; 0.5; 1.5 2
регулятор на 3 А 20 3 2
Прецизионный регулятор на 150 мА 40 0.15 3
KFxx 20 2.5: 8 0.5 0.4
Регулятор со сверхнизким собственным падением 20 2.7: 12 0.25 0.4
Регулятор на 5 А с низким собственным падением и подстройкой выходного напряжения 30 1.5; 3; 5 1.3
LExx Регулятор со сверхнизким собственным падением 20 3; 3.3; 4.5; 5; 8 0.1 0.2
Регулятор со сверхнизким собственным падением 20 3.3; 5 0.1 0.2
Регулятор со сверхнизким собственным падением 40 3.3; 5 0.1 0.25
регулятор на 85 мА с низким собственным падением 24 2.5: 3.3 0.085 0.5
Прецизионный регулятор отрицательного напряжения -35 -5; -8; -12; -15 1.5 1.1; 1.4
Регулятор отрицательного напряжения -35 -5; -8; -12; -15 0.1 1.7
Подстраиваемый регулятор отрицательного напряжения -40 1.5 2

Если принято решение о построении импульсного ИП, то следует выбрать подходящую микросхему преобразователя. Выбор осуществляется с учетом ряда основных параметров.

Основные характеристики понижающих импульсных DC/DC-преобразователей

Перечислим основные параметры импульсных преобразователей.

Диапазон входных напряжений (В). К сожалению, всегда есть ограничение не только на максимальное, но и на минимальное входное напряжение. Значение этих параметров всегда выбирается с некоторым запасом.

Диапазон выходных напряжений (В). В силу ограничения на минимальную и максимальную длительность импульса, диапазон значений выходного напряжения ограничен.

Максимальный выходной ток (А). Данный параметр ограничивается целым рядом факторов: максимальной допустимой рассеиваемой мощностью, конечным значением сопротивления силовых ключей и др.

Частота работы преобразователя (кГц). Чем выше частота преобразования, тем проще произвести фильтрацию выходного напряжения. Это позволяет бороться с помехами и снижать значения номиналов элементов внешнего L-C-фильтра, что приводит к увеличению выходных токов и к уменьшению габаритов. Однако рост частоты преобразования увеличивает потери на переключение силовых ключей и увеличивает индуктивную составляющую помех, что явно нежелательно.

КПД (%) является интегральным показателем эффективности и приводится в виде графиков для различных значений напряжений и токов.

Остальные параметры (сопротивление каналов интегральных силовых ключей (мОм), собственный ток потребления (мкА), тепловое сопротивление корпуса и др.) являются менее важными, но их также следует учитывать.

Новые преобразователи производства компании STMicroelectronics имеют высокие входное напряжение и КПД, и их параметры могут быть рассчитаны при помощи бесплатной программы eDesignSuite.

Линейка импульсных DC/DC от ST Microelectronics

Портфолио DC/DC STMicro­electro­nics постоянно расширяется. Новые микросхемы преобразователей имеют расширенный диапазон входных напряжений до 61 В ( / ), высокие выходные токи, выходные напряжения от 0.6 В ( / / ) (таблица 3).

Таблица 3. Новые DC/DC STMicroelectronics

Характеристики Наименование
L7987; L7987L
Корпус VFQFPN-10L HSOP-8; VFQFPN-8L; SO8 HSOP-8; VFQFPN-8L; SO8 HTSSOP16 VFQFPN-10L; HSOP 8 VFQFPN-10L; HSOP 8 HSOP 8 HTSSOP 16
Входное напряжение Uвх, В 4.0…18 4.0…18 4.0…18 4…38 4.5…38 4.5…38 4.5…38 4.5…61
Выходной ток, А 4 3 4 2 2 3 3 2 (L7987L); 3 (L7987)
Диапазон выходных напряжений, В 0.8…0.88×Uвх 0.8…Uвх 0.8…Uвх 0.85…Uвх 0.6…Uвх 0.6…Uвх 0.6…Uвх 0.8…Uвх
Рабочая частота, кГц 500 850 850 250…2000 250…1000 250…1000 250…1000 250…1500
Внешняя синхронизация частоты (макс), кГц нет нет нет 2000 1000 1000 1000 1500
Функции Плавный старт; защита от перегрузки по току; защита от перегрева
Дополнительные функции ENABLE; PGOOD ENABLE LNM; LCM; INHIBIT; защита от перегрузки по напряжению ENABLE PGOOD; защита от провалов напряжения; подстройка тока отсечки
Диапазон рабочих температур кристалла, °C -40…150

Все новые микросхемы импульсных преобразователей имеют функции плавного старта, защиты от перегрузки по току и перегрева.

Мощный и довольно хороший повышающий преобразователь напряжения можно построить на основе простого мультивибратора.
В моем случае этот инвертор был построен просто для обзора работы, был сделан также небольшой ролик с работой данного инвертора.

О схеме в целом — простой двухтактный инвертор, проще трудно представить. Задающим генератором и одновременно силовой частью являются мощные полевые транзисторы (желательно использовать ключи типа IRFP260, IRFP460 и аналогичные) подключенные по схеме мультивибратора. В качестве трансформатора можно использовать готовый транс от компьютерного блока питания (самый большой трансформатор).

Для наших целей нужно задействовать обмотки 12 Вольт и среднюю точку (коса, отвод). На выходе трансформатора напряжение может доходить до 260 Вольт. Поскольку выходное напряжение является переменным, то нужно выпрямить диодным мостом. Мост желательно собрать из 4-х отдельных диодов, готовые диодные мосты предназначенны для сетевых частот 50Гц, а в нашей схеме выходная частота в районе 50кГц.

Обязательно использовать импульсные, быстрые или ультрабыстрые диоды с обратным напряжением не ниже 400 Вольт и с допустимым током 1 Ампер и Выше. Можно задействовать диоды MUR460, UF5408,HER307, HER207, UF4007, и другие.
Те же самые диоды рекомендую использовать и в схеме задающей цепи.

Схема инвертора работает на основе параллельного резонанса, следовательно, частота работы будет зависеть от нашего колебательного контура — в лице первичной обмотки трансформатора и конденсатору параллельно этой обмотке.
На счет мощности и работы в целом. Правильно собранная схема в дополнительной наладке не нуждается и работает сразу. В ходе работы ключи не должны вообще греться, если выход трансформатора не нагружен. Холостой ток инвертора может доходить до 300мА — это норма, выше уже проблема.

С хорошими ключами и трансформатором с этой схемы без особых проблем можно снять мощность в районе 300 Ватт, в некоторых случаях даже 500 ватт. Номинал входных напряжений довольно шиток, схема будет работать от источника 6 Вольт до 32 -х Вольт, больше подавать не рискнул.

Дросселя — мотаются проводом 1,2мм на желто-белых кольцах от дросселя групповой стабилизации в компьютерном блоке питания. Количество витков каждого дросселя -7, оба дросселя полностью одинаковы.

Конденсаторы параллельно первичной обмотке может чуть нагреться в ходе работы, поэтому советую использовать высоковольтные конденсаторы с рабочим напряжением 400 Вольт и выше.

Схема проста и полностью работоспособна, но не смотря на простоту и доступность конструкции — это не идеальный вариант. Причина — не самое лучшее управление полевыми ключами. Схема лишена специализированного генератора и управляющей цепи, что делает ее не совсем надежный, если схема предназначена для длительной работы под нагрузкой. Схема может питать ЛДС и устройства, которые имеют встроенные ИИП.

Важное звено — трансформатор, должен быть хорошо намотан и правильно сфазирован, ибо он играет основную роль в надежной работе инвертора.

Первичная обмотка 2х5 витков шиной из 5 -и проводов 0,8 мм. Вторичная обмотка намотана проводом 0,8 мм и содержит 50 витков — это в случае самостоятельной намотки трансформатора.

Собрал недавно один цифровой прибор на микроконтроллере, и встал вопрос о его питании в походных условиях, ему надо напряжение 12 вольт, а ток примерно 50 мА. Тем более, он очень чувствителен к пульсации напряжения и из нескольких импульсных блоков питания, от какой-то аппаратуры он работать не захотел. Поискав в интернете, нашел один из самых оптимальных и дешевых вариантов: повышающий преобразователь DC-DC на микросхеме MC34063 . Для расчёта можно использовать программу - калькулятор. Вставил параметры которые нужны (он может работать как повышающий и понижающий) и получил вот такой результат:

Напряжение питания микросхемы не должно превышать 40 вольт, а ток не более 1.5 А. Печатные платы есть в сети и под smd детали, но у меня их нет в наличии, поэтому решил делать свою. Обратите внимание, что там нарисованы два сопротивления по 0.2 Ом. У меня был только 5-ти ваттный, поэтому и делал под него, но если бы нашел по меньше впаял бы в другое место, а лишнее отрезал.

Вместо сопротивления на R1- 1.5 кОм, поставил подстроечный на 5 кОм, чтобы регулировать выходное напряжение. Кстати, регулирует в довольно приличных пределах от 7 до 16, можно и больше но конденсатор выходной стоит на 16 вольт, поэтому дальше не поднимал.

А теперь коротко работе преобразователя. Подал 3 вольта, отрегулировал (R1) выход 12 вольт - и это напряжение он держит при снижении питания до 2.5 вольта, и поднятии до 11 вольт!

Встретился на просторах Ali весьма интересный понижающий преобразователь напряжения, с таким набором характеристик.

Вот что заявлено у продавца:
1.Input voltage range:5-36VDC
2.Output voltage range:1.25-32VDC adjustable
3.Output current: 0-5A
4.Output power: 75W
5.High efficiency up to 96%
6.Built in thermal shutdown function
7.Built in current limit function
8.Built in output short protection function
9.L x W x H =68.2x38.8x15mm

Про самые интересные фички этого преобразователя продавец или не сказал или не заострил на них внимание. А фички весьма интересные.

1. Встроенный вольтметр входного и выходного напряжений, амперметр и ваттметр, с функцией калибровки показаний. Функция калибровки для напряжения и тока работает независимо. Реальная точность показаний после калибровки получается в районе ~0.05v. Но об этом ниже.

2. Данный понижающий преобразователь умеет работать как в режиме стабилизации напряжения, так и в режиме стабилизации тока. По сути - это самый маленький и самый дешёвый лабораторный источник питания со встроенным мультиметром. К которому достаточно прицепить кроватку для аккумуляторов, чтобы получить готовое зарядное устройство любых типов аккумуляторов.

Была мысль использовать данный преобразователь как мощный преобразователь, способный утилизировать полную мощность солнечной батареи с напряжением в 6v. Так как использовать солнечную батарею планируется использовать вдали от цивилизации, где лишнего мультиметра с собой нет, очень хотелось найти преобразователь с наличием встроенного вольтметра-амперметра.

Понижающих преобразователей с функцией стабилизации тока, не боящихся КЗ, со встроенным вольтметром-амперметром совсем не большое предложение. Ближайшие конкуренты:

В общем, лучше ничего найти не удалось, и данный преобразователь был куплен. Через месяц пакет ждал на почте.

Первые-же тесты данного преобразователя разочаровали. Оказалось, что хотя сам преобразователь начинает работать при входящих напряжениях выше 3.2v, то вот с вольтметром была беда. Врал вольтметр на НЕСКОЛЬКО ВОЛЬТ!!! Поэтому первым делом была сделана калибровка. Но оказалось, что калибровка не спасает. Если откалибровать вольтметр при 5v, то начинались проблемы с показаниями при 12v и наоборот.

Позже, эксперименты показали, что вольтметр показывает корректные значения, только если входное напряжение выше 6.5v. При снижении входного напряжения ниже 6.5v вольтметр начинал врать. Причём искажались абсолютно все показания при низком входном напряжении. Даже показания выходного напряжения начинали «плыть», хотя фактически они были стабильны. Была крайне неприятно наблюдать, когда при уменьшении входного напряжения с 6.5v до 4.2v встроенный вольтметр начинал показывать, что входящее напряжение растёт. Вот пример цифр, входящего напряжения и напряжения на встроенном вольтметре.

6.74v – 6.6v
6.25v – 6.7v
5.95v – 6.7v
5.55v – 6.8v
5.07v – 7.2v
4.61v – 7.5v
4.33v – 7.8v

При падении входного напряжения ниже 4.2v вольтметр отключался вообще.

Был создан диспут, но продавец оказался нормальным и не стал упираться, 50% от цены сразу вернул.

Если забыть про вольтметр, либо рассчитывать, что питающее напряжение будет всегда больше 7v, тогда можно считать, что преобразователь работает отлично. Но для моего случая, когда основной диапазон рабочих напряжений 4v-8v это можно было считать полным фиаско.

Но тут пришла осень, длинные хмурые вечера, и стало интересно посмотреть, а нельзя ли что-нибудь сделать.

Фото основных элементов преобразователя












Оказалось, что ряд важных элементов спрятан под дисплеем, выпаивать который без особой необходимости не хотелось. Поэтому полную схему преобразователя нарисовать не получилось. Тем более, что несмотря на кажущуюся простоту, схема не такая уж и простая. Потыкав в работащий преобразователь мультиметром, стало ясно, все проблемы начинаются, когда отдельная шина питания, со стабилизированным напряжением в 5v для вольтметра и прочих «мозгов» начинает проседать. За стабильные 5v отвечает чип LM317. И как только напряжения на его входе начинает не хватать для выдачи стабильных 5v, начинаются проблемы у вольтметра.

Проблема стала понятна, но решение её не казалось таким уж простым. По идее, нужно заменить LM317 на какой-то аналог, который умеет не только понижать напряжение, но и повышать его. Аналог SEPIC преобразователя или подобного. Такие чипы есть, но они точно не будут совместимы по цоколёвке, они точно будут требовать дополнительную обвязку, да и цены на такие чипы обычно не гуманные. И тут пришла идея. А что если добавить плату повышающего преобразователя перед LM317. Тем более, что потребляемый ток «мозгами» совсем небольшой. В качестве такой платы идеально подходил преобразователь MT3608, обзоры которого есть или . Ещё одно неоспоримое достоинство MT3608 - это его цена. Сейчас на Али цена MT3608 начинается с 0.35$ и имеет тенденцию к ещё большему удешевлению.

Кроме цены, радует, то что для модификации нужно сделать минимум изменения на плате. Достаточно разрезать одну дорожку (1) и припаять три провода к MT3608 +Vin (2), -Vin (3) и +Vout (4).


Дополнительно, поверх дросселя MT3608 были намотаны несколько слоёв изоленты, чтобы выровнять высоту с подстроечным резистором. Плюс на самой плате MT3608 была добавлена перемычка для расширения диапазона регулировок потенциометром, и добавлен керамический конденсатор 10 мкф на выходе. В результате получилось так:



Полученный результат превзошёл все ожидания:

1. Значительно возросла точность показаний вольтметра-амперметра при входных напряжениях ниже 6.5v. Проще говоря, вольтметр стал работать как должен быть работать сразу. С учётом калибровки, можно выставить показания в нужном диапазоне в районе 0.05v. Хотя всё-же нужно заметить, что если точно выставить регион 5v, в районе 12v вольтметр будет врать в районе 0.3v.

2. Вольтметр теперь включается при 1.9v. Теперь можно видеть на встроенном вольтметре, момент включения силовой части преобразователя, при повышении входного напряжения выше 3.2v.

3. Теперь в случае перегрузки источника, это когда преобразователь пытается забрать от источника питания больше, чем тот может отдать, преобразователь стал работать значительно стабильнее. Силовая часть при перегрузке просаживает входное напряжение где-то до 3.45v, что вполне достаточно для питания «мозгов» преобразователя. Не происходит вход преобразователя в режим как-бы мерцания, когда напряжения не хватает для запуска «мозгов».

У данной модификации есть и пара недостатков:

1. Плата стала выше, поэтому чтобы не повредить «сэндвич», были вкручены шурупы, позволяющие устанавливать плату на ровную поверхность без риска.

2. Рабочий диапазон входных напряжений сократился. Ранее входное напряжение могло достигать 35v. Сейчас верхний предел снижен до 20v из-за ограничения MT3608 по входном напряжению. Но в моём случае это абсолютно не критично.

Устройствами с батарейным питанием сейчас уже никого не удивишь, всевозможных игрушек и гаджетов питающихся от аккумулятора или батарейки найдется с десяток в каждом доме. Между тем, мало кто задумывался над количеством разнообразных преобразователей, которые используются для получения необходимых напряжений или токов от стандартных батарей. Эти самые преобразователи делятся на несколько десятков различных групп, каждая со своими особенностями, однако в данный момент времени мы говорим про понижающие и повышающие преобразователи напряжения, которые чаще всего называются AC/DC и DC/DC преобразователями. В большинстве случаев для построения таких конвертеров используются специализированные микросхемы, позволяющие с минимальным количеством обвязки построить преобразователь определенной топологии, благо микросхем питания на рынке сейчас великое множество.

Рассматривать особенности применения данных микросхем можно бесконечно долго, особенно с учетом целой библиотеки даташитов и аппноутов от производителей, а также бесчисленного числа условно-рекламных обзоров от представителей конкурирующих фирм, каждая из которых старается представить свой продукт наиболее качественным и универсальным. В этот раз мы будем использовать дискретные элементы, на которых соберем несколько простейших повышающих DC/DC преобразователей, служащих для того, чтобы запитать небольшое маломощное устройство, к примеру, светодиод, от 1 батарейки с напряжением 1,5 вольт. Данные преобразователи напряжения можно смело считать проектом выходного дня и рекомендовать для сборки тем, кто делает свои первые шаги в удивительный мир электроники.

На данной схеме представлен релаксационный автогенератор, представляющий собой блокинг-генератор со встречным включением обмоток трансформатора. Принцип работы данного преобразователя следующий: при включении, ток протекающий через одну из обмоток трансформатора и эмиттерный переход транзистора - открывает его, в результате чего он открывается и больший ток начинает течь через вторую обмотку трансформатора и открытый транзистор. В результате в обмотке, подключенной к базе транзистора наводится ЭДС, запирающая транзистор и ток через него обрывается. В этот момент энергия, запасенная в магнитном поле трансформатора, в результате явления самоиндукции, высвобождается и через светодиод начинает протекать ток, заставляющий его светиться. Затем процесс повторяется.

Компоненты, из которых можно собрать этот простой повышающий преобразователь напряжения, могут быть совершенно различными. Схема, собранная без ошибок, с огромной долей вероятности будет корректно работать. Мы пробовали использовать даже транзистор МП37Б - преобразователь отлично функционирует! Самым сложным является изготовление трансформатора - его надо намотать сдвоенным проводом на ферритовом колечке, при этом количество витков не играет особой роли и находится в диапазоне от 15 до 30. Меньше - не всегда работает, больше - не имеет смысла. Феррит - любой, брать N87 от Epcos не имеет особого смысла, также как и разыскивать M6000НН отечественного производства. Токи в цепи протекают мизерные, поэтому размер колечка может быть очень небольшим, внешнего диаметра в 10 мм будет более чем достаточно. Резистор сопротивлением около 1 килоома (никакой разницы между резисторами номиналом в 750 Ом и 1,5 КОм обнаружено не было). Транзистор желательно выбрать с минимальным напряжением насыщения, чем оно меньше - тем более разряженную батарейку можно использовать. Экспериментально были проверены: МП 37Б, BC337, 2N3904, MPSH10. Светодиод - любой имеющийся, с оговоркой, что мощный многокристальный будет светиться не в полную силу.

Собранное устройство выглядит следующим образом:

Размер платы 15 х 30 мм, и может быть уменьшен до менее чем 1 квадратного сантиметра при использовании SMD-компонентов и достаточно маленького трансформатора. Без нагрузки данная схема не работает.

Вторая схема - это типовой степ-ап преобразователь, выполненный на двух транзисторах. Плюсом данной схемы является то, что при её изготовлении не надо мотать трансформатор, а достаточно взять готовый дроссель , но она содержит больше деталей, чем предыдущая.

Принцип работы сводится к тому, что ток через дроссель периодически прерывается транзистором VT2, а энергия самоиндукции направляется через диод в конденсатор C1 и отдается в нагрузку. Опять же, схема работоспособна с совершенно различными компонентами и номиналами элементов. Транзистор VT1 может быть BC556 или BC327, а VT2 BC546 или BC337, диод VD1 - любой диод Шоттки, например, 1N5818. Конденсатор C1 - любого типа, емкостью от 1 до 33 мкФ, больше не имеет смысла, тем более, что можно и вовсе обойтись без него. Резисторы - мощностью 0,125 или 0,25 Вт (хотя можно поставить и мощные проволочные, ватт эдак на 10, но это скорее расточительство чем необходимость) следующих номиналов: R1 - 750 Ом, R2 - 220 КОм, R3 - 100 КОм. При этом, все номиналы резисторов могут быть совершенно свободно заменены на имеющие в наличии в пределах 10-15% от указанных, на работоспособности правильно собранной схемы это не сказывается, однако влияет на минимальное напряжение, при котором может работать наш преобразователь.

Самая важная деталь - дроссель L1, его номинал также может отличаться от 100 до 470 мкГн (экспериментально проверены номиналы до 1 мГн - схема работает стабильно), а ток на который он должен быть рассчитан не превышает 100 мА. Светодиод - любой, опять же с учетом того, что выходная мощность схемы весьма невелика.Правильно собранное устройство сразу же начинает работать и не нуждается в настройке.

Напряжение на выходе можно стабилизировать, установив стабилитрон необходимого номинала параллельно конденсатору C1, однако следует помнить, что при подключении потребителя напряжение может проседать и становиться недостаточным. ВНИМАНИЕ! Без нагрузки данная схема может вырабатывать напряжение в десятки или даже сотни вольт! В случае использования без стабилизируещего элемента на выходе, конденсатор C1 окажется заряжен до максимального напряжения, что в случае последующего подключения нагрузки может привести к её выходу из строя!

Преобразователь также выполнен на плате размером 30 х 15 мм, что позволяет прикрепить его на батарейный отсек типа размера AA. Разводка печатной платы выглядит следующим образом:

Обе простые схемы повышающих преобразователей можно сделать своими руками и с успехом применять в походных условиях, например в фонаре или светильнике для освещения палатки, а также в различных электронных самоделках, для которых критично использование минимального количества элементов питания.