Основные виды рычажных механизмов. Строение водопроводного крана

] Учебник для машиностроительных вузов. 2-е издание, переработанное и дополненное. Авторы: Алексей Николаевич Банкетов, Ю.А. Бочаров, Н.С. Добринский, Е.Н. Ланской, В.Ф. Прейс, И.Д. Трофимов. Под редакцией А.Н. Банкетова, Е.Н. Ланского.
(Москва: Издательство «Машиностроение», 1982)
Скан, обработка, формат Djv: АЧ, 2003

  • КРАТКОЕ ОГЛАВЛЕНИЕ:
    Предисловие (3).
    Введение (5).
    Раздел I. КРИВОШИПНЫЕ МАШИНЫ
    Глава 1. Классификация кривошипных машин, кинематика и статика кривошипно-рычажных механизмов (10).
    Глава 2. Ползуны, шатуны и коленчатые валы (30).
    Глава 3. Муфты и тормоза (59).
    Глава 4. Зубчатые передачи, приводные валы, подшипники и средства защиты машин от перегрузки (77).
    Глава 5. Станины, подушки и фундаменты машин (93).
    Глава 6. Уравновешивание кривошипно-ползунных механизмов. Динамика кривошипных прессов (116).
    Глава 7. Энергетика и КПД кривошипных прессов (125).
    Глава 8. Система смазки и устройства по технике безопасности (137).
    Глава 9. Монтаж, наладка и исследования машин (145).
    Глава 10. Кривошипные прессы общего назначения (147).
    Глава 11. Вытяжные прессы (155).
    Глава 12. Кривошипные ножницы (165).
    Глава 13. Кузнечно-штамповочные автоматы для объемной штамповки (180).
    Глава 14. Листоштамповочные автоматы (210).
    Глава 15. Горячештамповочные кривошипные прессы (219).
    Глава 16. Чеканочные кривошипно-коленные прессы (223).
    Глава 17. Горизонтально-ковочные машины (231).
    Глава 18. Обжимные машины (241).
    Глава 19. Перспективы усовершенствования кривошипных прессов (248).
    Раздел II. ГИДРАВЛИЧЕСКИЕ ПРЕССЫ
    Глава 20. Основные понятия (251).
    Глава 21. Гидравлические прессы с насосным безаккумуляторным приводом (259).
    Глава 22. Гидравлические прессы с насосно-аккумуляторным приводом. (283).
    Глава 23. Гидравлические прессы с мультипликаторным приводом и КПД гидропрессовых установок (302).
    Глава 24. Клапаны, распределители и трубопроводы гидропрессовых установок (313).
    Глава 25. Основные детали гидравлических прессов (322).
    Глава 26. Основные тины гидравлических прессов. Перспективы развития прессостроения (338).
    Раздел III. МОЛОТЫ
    Глава 27. Общие сведения (351).
    Глава 28. Паровоздушные молоты (364).
    Глава 29. Приводные пневматические молоты (400).
    Глава 30. Гидравлические и газогидравлические штамповочные молоты (411).
    Глава 31. Газогидравлические высокоскоростные молоты (419).
    Глава 32. Взрывные высокоскоростные молоты (427).
    Глава 33. Фундаменты молотов (430).
    Глава 34. Перспективы усовершенствования молотов (437).
    Раздел IV. ВИНТОВЫЕ ПРЕССЫ
    Глава 35. Общие сведения (439).
    Глава 36. Теория винтовых прессов (454).
    Глава 37. Конструкция винтовых прессов и особенности расчета их деталей (479).
    Раздел V. РОТАЦИОННЫЕ МАШИНЫ
    Глава 38. Общие сведения. Правильные и гибочные машины (488).
    Глава 39. Дисковые ножницы (500).
    Глава 40. Ковочные вальцы, для продольной и поперечной вальцовки, специальные ротационные машины (509).
    Раздел VI. РОТОРНЫЕ И ИМПУЛЬСНЫЕ МАШИНЫ. СТАТЫ
    Глава 41. Роторные и роторно-конвейерные машины-автоматы (523).
    Глава 42. Импульсные машины и установки (535).
    Глава 43. Гидростатические и пневмостатические машины (550).
    Раздел VII. ЭЛЕМЕНТЫ ТЕОРИИ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ МАШИН (553).
    Список литературы (563).
    Предметный указатель (565).

Аннотация издательства: Дана классификация современных кузнечно-штамповочных машин, изложены основные принципы и методы расчета и конструирования узлов и деталей, приведены кинематические схемы.
Во 2-м издании (1-е издание 1970 г.) освещены новейший опыт создания прогрессивных кузнечно-штамповочных машин, а также перспективы развития в этой области.

Механизм – искусственно созданная кинематическая цепь, совершающая вполне определенные движения.

В простейшей интерпретации: механизм – это кинематическая цепь + двигатель . Из этого вытекает, что в любом механизме есть одно или несколько ведущих звеньев (см. § 1.1). Поэтому ясно, что сумма элементарных работ всех внешних сил, приложенных к ведущему звену, положительна, а для ведомого звена – равна нулю.

Так как механизм состоит из кинематических цепей, то также как и кинематические цепи, механизмы делятся на плоские и пространственные, простые и сложные.

Плоские механизмы – такие, все звенья которых движутся в одной или параллельных плоскостях.

Пространственные механизмы – такие, все звенья которых описывают пространственные кривые.

Простой – механизм , состоящий не более чем из четырех звеньев.

Сложный – механизм , состоящий из более чем четырех звеньев.

Также все механизмы классифицируют по конструктивной схожести.

Ø Рычажные (в других источниках – стержневые) – это механизмы , звенья которых при соединении образуют между собой только низшие кинематические пары. Они применяются для преобразования движения или передачи силы в машинах. Простые (типовые, частные) рычажные механизмы состоят из четырех звеньев и подразделяются на коромысловые, кривошипно-ползунные, кулисные (рисунок 1.6, а-в ). Рычажные механизмы получили широкое применение благодаря их долговечности, надежности и простоте. Кривошипно-ползунные механизмы (рисунок 1.6, а ) применяются в двигателях внутреннего сгорания, компрессорах, насосах и т.д. В этих механизмах вращательное движение преобразуется в возвратно-поступательное и наоборот. Коромысловые механизмы (рисунок 1.6, б ) применяются в зерноуборочных комбайнах, в стогометателях, в пресс-подборщиках, качающихся конвейерах и т.д. Кулисные механизмы (рисунок 1.6, в ) получили широкое применение в строгальных, зубодолбежных станках. Обычно у них длительный рабочий ход и быстрый, обеспечивающий возврат резца в исходное положение, холостой ход. Большей частью кулисные механизмы применяются в практике с дополнительной структурной группой. Пространственные рычажные механизмы получили более широкое применение в робототехнике, чем плоские. На их основе создаются различные роботы и манипуляторы. Особенностью этих механизмов является то, что они имеют незамкнутую кинематическую цепь, обладают большим числом степеней свободы, а значит, имеют много приводов. Согласованная работа приводов звеньев обеспечивает перемещение руки захвата по рациональной траектории в заданное место.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ТРАНСПОРТА

Кафедра Детали машин

ОБЗОР ОСНОВНЫХ ВИДОВ МЕХАНИЗМОВ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к практическим занятиям по Теории механизмов и машин для студентов специальностей НР-130503, ПСТ-130501, НБ-130504, МОП-130602, АТХ-190601, СТЭ-190603, ПДМ-190205, СП-150202, ПТИ-260703, ТМ-151001, МКC-151002, МХП-240801, МСО-190207

очной и заочной полной и сокращенной форм обучения

Тюмень 2007

Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Составители: доцент, к.т.н. Забанов Михаил Петрович

профессор, д.т.н. Бабичев Дмитрий Тихонович

ассистент, Панков Дмитрий Николаевич

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

В процессе занятия необходимо ознакомиться с основными группами и видами механизмов, их графическими изображениями. Научиться представлять реальный механизм в виде схемы.

В отчете необходимо изобразить и описать классические виды механизмов.

Ведущей отраслью современной техники является машиностроение. Про­гресс машиностроения определяется созданием новых высокопроизводитель­ных и надежных машин. Решение этой важнейшей проблемы основывается на комплексном использовании результатов многих научных дисциплин и, в пер­вую очередь, теории механизмов и машин.

По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение: машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.

По выполняемым машинами функциям их делят на следующие классы:

1) Энергетические машины

2) Транспортные машины

3) Технологические машины

4) Контрольно-управляющие машины

5) Логические машины

6) Кибернетические машины

Определение термина "механизм" неоднократно менялось по мере того, как появлялись новые механизмы.

Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел. Если в преобразовании движения кроме твердых тел участвуют жидкие или газообразные тела, то механизм называется соответственно гидравлическим или пневматическим. С точки зрения функционального назначения механизмы делятся на следующие виды:

1) Механизмы двигателей и преобразователей

2) Передаточные механизмы

3) Исполнительные механизмы

4) Механизмы управления, контроля и регулирования

5) Механизмы подачи, транспортировки и сортировки обрабатываемых изделий и объектов

6) Механизмы автоматического счета, взвешивания и упаковки готовой продукции

Основным признаком механизма является преобразование механического движения. Механизм входит в состав многих машин, т. к. для преобразования энергии, материалов и информации требуется обычно преобразование движения получаемого от двигателя. Нельзя отождествлять понятия "машина" и "механизм". Во-первых, кроме механизмов в машине всегда имеются дополни­тельные устройства, связанные с управлением механизмами. Во-вторых, есть машины, в которых нет механизмов. Например, в последние годы созданы тех­нологические машины, в которых каждый исполнительный орган приводится в движение от индивидуального электро- или гидродвигателя.

При описании механизмов, они были разделены на отдельные группы по признаку их конструктивного оформления (рычажные, кулачковые, фрикцион­ные, зубчатые и др.)

Механизмы образуются последовательным присоединениям звеньев к начальному механизму.

ЗВЕНО – одна или несколько неподвижно соединенных друг с другом деталей, входящих в механизм и движущихся, как одно целое .

ВХОДНОЕ ЗВЕНО – звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Входное звено соединено с двигателем либо с выходным звеном другого механизма.

ВЫХОДНОЕ ЗВЕНО – звено, совершающее движение, для выполнения которого предназначен механизм. Выходное звено соединено с исполнительным устройством (рабочим органом, указателем прибора), либо со входным звеном другого механизма.

Звенья соединяются друг с другом подвижно посредством кинематических пар: вращательных (шарнир) и поступательных (ползун).

ТРАЕКТОРИЯ движения точки (звена) – линия перемещения точки в плоскости. Это может быть прямая линия или кривая.

РЫЧАЖНЫЕ МЕХАНИЗМЫ

Рычажными механизмами называют механизмы, в которые входят жесткие звенья, соединенные между собой вращательными и поступательными кинема­тическими парами. Простейшим рычажным механизмом является двухзвенный механизм , состоящий из неподвижного звена-стойки 2 (Рис.1.1 ) и подвижного рычага 1 , имеющего возможность вращаться вокруг неподвижной оси (обычно это начальный механизм).

Рис.1.1 Двухзвенный рычажный механизм

К двухзвенным рычажным механизмам относятся механизмы многих ро­тационных машин: электромоторов, лопастных турбин и вентиляторов. Меха­низмы всех этих машин состоят из стойки и вращающегося в неподвижных подшипниках звена (ротора).

Более сложными рычажными механизмами являются механизмы, состоя­щие из четырех звеньев, так называемые четырехзвенные механизмы .

На Рис.1.2 показан механизм шарнирного четырехзвенника, состоящего из трех подвижных звеньев 1, 2, 3 и одного неподвижного звена 4. Звено 1 , со­единенное со стойкой, может совершать полный оборот и носит название кри­вошипа. Такой шарнирный четырехзвенник, имеющий в своем составе один кривошип и одно коромысло называется кривошипно-коромысловым меха­низмом , где вращательное движение кривошипа посредством шатуна преобразуется в качательное движение коромысла. Если кривошип и шатун вытянуты в одну линию, то коромысло займет крайнее правое положение, а при наложении друг на друга – левое.

Рис. 1.2 Механизм шарнирного четырехзвенника

Примером такого механизма является механизм представленный на Рис.1.3 , где звено 1 – кривошип (входное звено), звено 2 – шатун, звено 3 – ко­ромысло. Точка M S двигаясь по кривой описывает траекторию . Одни траектории могут быть воспроизведены рычажными механизмами теоретически точно, другие – приближенно, с достаточной для практики степе­нью точности.

Рассматриваемый механизм, называемый симметричным механизмом Чебышева, часто применяют в качестве кругового направляющего механизма, у которого АВ = ВС = ВМ = 1. При указанных соотношениях

Рис. 1.3 Кривошипно-коромысловый механизм

точка М шатуна АВ описывает траекторию, симметричную относительно оси n - п . Угол наклона оси симметрии к линии центров СО определяется: ÐМСО = π – Ω / 2. Часть траектории точки М является дугой окружности радиуса О 1 М, что может быть использовано в механизмах с остановкой выходного звена.

Другим примером четырехзвенника является широко распро­страненный в технике кривошипно-ползунный механизм (Рис. 1.4 ).

Рис. 1.4 Кривошипно-ползунный механизм

В этом механизме вместо коромысла устанавливается ползун, движущийся в непод­вижной направляющей. Этот кривошипно-шатунный механизм применяют в поршневых двигателях, насосах, компрессорах и т.д. Если эксцентриситет е равен нулю, то получим центральный кривошипно-ползунный механизм или аксиальный. При е не равном нулю кривошипно-ползунный механизм называ­ется нецентральным или дезаксиальным. Здесь вращение кривошипа ОА через шатун АВ преобразуется в возвратно-поступательное движение ползуна. Есте­ственно крайние положения ползуна, будут при расположении кривошипа и шатуна в одну линию.

Если в рассмотренном механизме заменить неподвиж­ную направляющую на подвижную, которая называется кулисой, то получим четырехзвенный кулисный механизм с кулисным камнем. Примером такого механизма может слу­жить кулисный механизм строгального станка (Рис.1.5 ). Кривошип 1 , враща­ясь вокруг оси, через кулисный камень 2 заставляет кулису 3 совершать качательное движение. При этом кулисный камень относительно кулисы движется возвратно-поступательно.

Рис. 1.5 Четырехзвенный кулисный механизм

Крайние положения кулисы будут при перпендикулярном расположении к ней кривошипа. Построить такие положения просто: изображается окружность радиусом равным длине кривошипа (траектория движения точки А ), и проводятся касательные из оси вращения кулисы.

Таким образом звенья могут совершать поступательное , вращательное или сложное движения.

Рычажные механизмы. Часть 1

К рычажным механизмам относятся механизмы, состоящие из звеньев совершающих вращательное, поступательное или плоско – параллельное движение. Эти механизмы отличаются простотой, высоким КПД и большой нагрузочной способностью, однако они не могут обеспечить любой закон движения ведомого звена, что в некоторой степени ограничивает их применение в технике.
В технологическом оборудовании широко используются следующие виды рычажных механизмов: механизмы шарнирного четырехзвенника, кривошипно-шатунные механизмы, кулисные механизмы. Рассмотрим примеры и конструктивные особенности рычажных механизмов.

Механизмы шарнирного четырехзвенника

Механизмы шарнирного четырехзвенника в свою очередь делятся на три типа: двухкривошипные, в которых ведущее и ведомое звено могут совершать полный оборот (см. Рис. 1а), кривошипно-коромысловые, в которых ведущее звено кривошип вращается, а ведомое коромысло совершает качательное движение (см. Рис. 1б) и двух коромысловые, в которых и ведущее и ведомое звенья совершают качательное движение (см. Рис. 1в).

Примером двухкривошипного механизма может служить механизм переноса длинномерной заготовки из углового проката со стеллажа на рольганг технологического оборудования, конструктивная схема которого показана на Рис. 2. Он состоит из двух четырехлучевых звездочек 1 и 2, установленных на валах 3 и шарнирно соединенных между собою посредством осей 5 четырьмя ложементами 4, в которые укладываются при переносе заготовки 6, образуя, таким образом, четыре двухкривошипных механизма. При этом валы 3 на подшипниках скольжения расположены в корпусах 7 и 8, которые посредством кронштейнов 9 установлены на общей раме 10.

Еще одним представителем механизмов шарнирного четырехзвенника являются двухкоромысловые механизмы (см. Рис. 3), которые применяется, как правило, для изменения (увеличения, уменьшения) угла качания ведомого коромысла или изменения создаваемого на нем усилия.

На Рис. 3а показан двухкоромысловый механизм, конструкция которого (соотношение длин и взаимное расположение коромысел 1 и 3) позволяет увеличить угол качания β α ведущего коромысла 1. На Рис. 3б показан двухкоромысловый механизм, конструкция которого (соотношение длин и взаимное расположение коромысел 1 и 3) позволяет уменьшить угол качания β ведомого коромысла 3 по отношению к углу качания α ведущего коромысла 1. Если в механизме, показанном на Рис. 3а , ведущим будет звено 3 совершающее вращение с полным оборотом, а в механизме, показанном на Рис. 3б , его ведущее звено 1 будет совершать полный оборот, то эти двухкоромысловые механизмы превратятся в кривошипно-коромысловые. Данные механизмы редко применяются в качестве силовых исполнительных механизмов машин и оборудования, поскольку могут работать только при ограниченной величине углов качания (60 – 90 град.) из-за возрастающей величины потерь при передаче усилий от ведущего звена к ведомому, при увеличении углов качания кривошипов. Такие механизмы обычно используются как вспомогательные, работающие с небольшими скоростями и нагрузками. Рассмотренный тип механизмов часто используется в качестве исполнительного в различного рода кантователях.

Рис. 4. Кантователь для опрокидывания стола формовочной машины.

На Рис 5 показана конструкция сварочного кантователя, поворотные губки
которого являются ведомыми коромыслами шарнирных четырехзвенников имеющих общее ведущие коромысло. Он содержит, установленный на раме 1, приводной пневмоцилиндр 2, шток 3 которого посредствам двуплечего рычага 7, ведомое плечо которого является ведущим коромыслом двух шарнирных четырехзвенников содержащих тяги 8 и 9, шарнирно соединенные с устновленными на общей оси 4 поворотными губками 5 и 6, являющимися ведомыми коромыслами этих четырехзвенников.
Работает кантователь следующим образом. После окончания сварки первого шва изделия 11 подается команда на включение пневмоцилиндра 2, шток 3 которого втягивается и сводит поворотные губки 5 и 6, устанавливая, при этом, свариваемое изделие 11 в вертикальное положение (в это время опорные ролики 10 перекатываются по полке изделия). В результате этого центр тяжести свариваемого изделия 11 перемещается на противоположную сторону опорной призмы (на Рис 5 не показана) и при последующем разведении рычагов 5 и 6, что происходит при выдвижении штока 3 пневмоцилиндра 2, изделие укладывается в положение удобное для сварки второго шва.


конструктивного исполнения механизмов шарнирного
четырехзвенника (см. Рис. в таб.) с описание их работы


Кривошипно-шатунные механизмы

Кривошипно-шатунные механизмы из всех видов рычажных механизмов получили наибольшее распространение в технике благодаря простоте кинематики, позволяющей сравнительно легко преобразовывать вращательное движение в поступательное, что позволяет использовать их в исполнительных механизмах технологического оборудования, например, в механических прессах, и поступательное движение во вращательное, что позволяет их использовать как исполнительный меха- низм двигателя внутреннего сгорания. Кривошипно-шатунный механизм состоит из, установленного в станине с возможностью вращения кривошипа 1 (коленчатого или эксцентрикового вала), шарнирно соединенного с ним шатуна 2, который шарнирно соединен с ползуном 3, осуществляющим при вращении кривошипа 1 возвратно-поступательное движение в направляющих станины 4 (см. Рис. 9).

Рис. 9. Кривошипно-шатунный механизм.

В данном разделе полной версии статьи содержится 9 примеров
конструктивного исполнения кривошипно – шатунных

Кулисные механизмы

Кулисные механизмы – это механизмы, содержащие два специфических звена: кулису и кулисный камень (см. Рис. 16), каждое из которых, совершая вращательное или качательное движение, поступательно перемещаются друг относительно друга. Наличие двух таких звеньев в механизме приводит к различной скорости перемещения ведомого звена, при его прямом и обратном ходе, что в отдельных случаях является преимуществом механизма, а в отдельных случаях недостатком и в целом определяет область его использования. Существует два основных типа кулисных механизмов различающихся по тому, какое движение совершает кулиса, это механизмы с качательным и вращательным движением кулисы

Рис. 16. Типы кулисных механизмов

На Рис. 16а показан механизм с качательным движением кулисы состоящий из кривошипа 1, на оси 2 которого размещается кулисный камень 3, имеющий возможность поступательного перемещения в пазу кулисы 4, шарнирно установленной на неподвижной стойке посредством оси 5 и совершающей качательное движение при вращении кривошипа 1. При этом кулиса 4 совершает прямой ход при повороте кривошипа 1 на угол а , а обратный ход при повороте кривошипа на угол В , что приводит к различию скоростей прямого и обратного хода по причине неравенства этих углов. На Рис. 16б показан механизм с вращательным движением кулисы состоящий из кривошипа 1, на оси 2 которого размещается кулисный камень 3 и кулисы 4, шарнирно установленной на неподвижной стойке посредством оси 5 и совершающей при вращении кривошипа 1 вращательное движе-ние. При такой схеме кулисного механизма различие скорости прямого и обратного хода кулисы также определяется разницей углов а и В .
По сравнению с механизмом шарнирного четырехзвенника используемого для таких же целей (см. Рис. 3), кулисный механизм позволяет проще обеспечить компоновку ведущего кривошипа и ведомой кулисы разместив их симметрично относительно общей оси, что бывает необходимо при проектировании. Но, при этом кулисный механизм имеет увеличенные потери за счет дополнительного трения скольжения в кулисной паре и поэтому находит применение в основном в мало нагруженных, вспомогательных механизмах технологического оборудования.

В данном разделе полной версии статьи содержится 6 примеров
конструктивного исполнения кулисных
механизмов (см. Рис. в таб.) с описанием их работы

Рычажные механизмы с дополнительными
конструктивными элементами

При использовании рычажных механизмов в составе технологического оборудования и оснастки для обеспечения эффективной работы в него встраиваются дополнительные конструктивные элементы, которые позволяют решать следующие задачи:
− регулировать величину хода выходного звена (ползуна, рычага, кулисы),
− регулировать исходное (конечное) положение выходного звена,
− предохранять детали механизма от поломки,
− сообщать выходному звену сложное движение
− включать и выключать работу механизма,
Рассмотрим примеры конструктивного выполнения таких рычажных механизмов. Регулирование величины хода выходного звена рычажного механизма осуществляется двумя способами, изменением соотношения плеч рычага, или изменением величины эксцентриситета ведущего кривошипа.

Рис 26 Конструкция устройства, позволяющего регулировать длину его ведущего плеча.

На Рис 26 показана конструкция устройства, встроенного в рычаг малонагруженного рычажного механизма, позволяющего регулировать длину его ведущего плеча. В этот рычаг, состоящий из ведущего 1 и ведомого 2 плеч и установленный на оси 3, встроен палец 6, шарнирно, посредствам оси 5 соединенный с ведущей тягой 4 и фиксируемый в требуемом положении в пазу 10, а в его резьбовое отверстие пропущен регулировочный винт 7. При этом, ведомое плечо 2 рычага шарнирно посредствам оси 8 соединено с ведомым звеном рычажного механизма. При выполнении регулировки длины ведущего плеча 1 рычага производится раскручивание гайки 9, затем перемещение в ту или другую сторону пальца 6 по пазу ведущего плеча 1 рычага регулировочным винтом 7 и после этого выполняется последующее стопорение пальца 6 гайкой 9.

Рис 27 Конструкция кривошипно – шатунного механизма с устройством для регулировки величины хода его выходного звена

На Рис 27 показана конструкция кривошипно – шатунного механизма со встроенным устройством для регулировки величины хода его выходного звена, которое выполнено в виде промежуточного двуплечего рычага с регулируемой длиной ведущего плеча, Он содержит ведущий кривошипный вал 1, на мотылевой шейке которого установлен шатун 2, шарнирно соединенный посредствам оси 3 с промежуточным двуплечим рычагом 5, установленным на станине посредствам оси 6, а с помощью оси 7 соединенным с ведомой тягой 8. При этом на промежуточном рычаге 5 посредствам оси 9 шарнирно установлен ходовой винт 10, на котором расположена гайка (гайка на Рис 34 не показан) шарнирно соединенная с осью 3 шатуна 2 и имеет возможность, как ползушка, перемещаться в радиусном пазу 4 промежуточного рычага 5. При вращении ходового винта 10 шатун 2 поворачивается на угол αi что приводит к изменению величины ведущего плеча промежуточного рычага 5, а изменяющееся при этом, соотношение длин его ведомого и ведущего плеч позволяет менять величину хода ведомой тяги 8 механизма. Рассмотренное устройство для регулировки хода выходного звена механизма выгодно отличается от рассмотренного ранее тем, что оно позволяет при выполнении регулировки сохранять исходное положение выходного звена (тяги 8), что обеспечивается наличием в промежуточном рычаге 5 радиусного паза 4, центр которого совпадает с осью кривошипного вала 1, поэтому при выполнении регулировки поворот шатуна 2 не меняет положение промежуточного рычага 5.

В данном разделе полной версии статьи содержится 12 примеров
конструктивного исполнения рычажных механизмов
с дополнительными конструктивными элементами
(см. Рис. в таб.) с описание их работ ы

Зубчато – рычажные механизмы.

Комбинация рычажных механизмов с зубчатыми передачами позволяет создать механизмы с новыми нехарактерными для обоих свойствами. Чаще всего такие механизмы используются для получения выстоя выходного звена, но в ряде случаев они могут позволять получать различные траектории движения выходного звена, а также изменять величину и скорость его перемещения

Рис 36 Конструкция зубчато – рычажного механизма позволяющая получить удвоенное число возвратно-поступательного перемещения ведомого звена по отношению к ведущему.

На Рис 36 показана конструкция зубчато – рычажного механизма позволяющая получить удвоенное число возвратно-поступательного перемещения ведомого звена по отношению к ведущему. Ведущим элементом этого привода является тяга 1, которая сообщает качательное движение рычагу 2, связанному с зубчатым колесом 3 и свободно поворачивающимся с этим колесом на оси 4. Зубчатое колесо 3 сообщает вращение колесу 5, связанному с рычагом 7, установленным на оси 6. Палец 10 рычага 7, перемещаясь в пазу кулисы 9, сообщает движение тяге 8. Оси 4 и 6 смонтированы в неподвижном корпусе 11, установленном на станине. На Рис 36б,в тяга 1 показана в крайних правом и левом положениях, что соответствует началу и середине цикла ее движения. Кулиса 9 в обоих случаях занимает одно и то же положение, поскольку она совершает полный цикл и возвращается в исходное положение. Рычаг 2 перемещается тягой 1 из положения, показанного на Рис 36а влево, вследствие чего, зубчатое колесо 3 совершает определенную часть оборота. Зубчатое колесо 5, находящееся в зацеплении с колесом 3, совершает такой же поворот в противоположном направлении. Рычаг 7, соединенный с колесом 5 поворачивается вместе с ним, а палец 10 перемещается вниз по пазу кулисы 9. До пересечения пальцем 10 центра оси 6, кулиса поворачивается вправо и доходит до крайнего положения (см. Рис 36в). При дальнейшем движении тяги 1 палец 10 опускается ниже центра оси 6 и перемещает кулису 9 в обратном направлении, т. е. влево. В момент достижения тягой 1 крайнего левого положения кулиса 9 также занимает свое крайнее левое положение, делая двойной ход за время совершения тягой 1 только хода вперед. За время совершения тягой 1 обратного хода кулиса 9 совершает еще один двойной ход.

В данном разделе полной версии статьи содержится 4 примера
конструктивного исполнения зубчато – рычажных
механизмов (см. Рис. в таб.)



Полная версия статьи, включает 24 страниц текста и 41 чертеж.

ЛИТЕРАТУРА.

1. Игнатьев Н. П. Основы проектирования Азов 2011г.
2. Игнатьев Н. П. Проектирование механизмов Азов 2015г.

Статья написана на основании информации из соответствующих разделов работы автора «Основы проектирования» изданной в 2011г и работы автора «Проектирование механизмов» , изданной в 2015г.

Для приобретения полной версии статьи добавьте её в корзину,

Стоимость полной версии статьи 200 рублей.

Министерство транспорта Российской Федерации

Федеральное агентство морского и речного транспорта

Крымский филиал

ФГБОУ ВПО

«Государственный морской университет имени адмирала Ф.Ф.Ушакова»

Кафедра "Фундаментальные дисциплины"

Теория механизмов и машин

Курсовой проект

Плоский рычажный механизм

Пояснительная записка

Проект разработал: ст. гр. _

_____________________________

Руководитель проекта: проф. Буров В.С.

Севастополь 2012


1. Кинематический анализ плоского рычажного механизма................................................... 3

1.1. Построение механизма в 12 положениях.................................................................................. 3

1.2. Построение планов мгновенных скоростей............................................................................. 4

1.3. Построение планов мгновенных ускорений............................................................................ 5

1.4. Построение диаграммы перемещений....................................................................................... 8

1.5. Построение диаграммы скоростей............................................................................................. 9

1.6. Построение диаграммы ускорений............................................................................................ 9

2. Силовой анализ плоского рычажного механизма................................................................ 10

2.1. Определение нагрузок, действующих на звенья механизма................................................ 10

2.2. Силовой расчёт группы звеньев 7, 6........................................................................................ 12

2.3. Силовой расчёт группы звеньев 4, 5........................................................................................ 13

2.4. Силовой расчёт группы звеньев 2, 3........................................................................................ 14

2.5. Силовой расчёт ведущего звена............................................................................................... 15

2.6. Силовой расчёт ведущего звена методом Жуковского.......................................................... 15

3. Синтез зубчатого механизма..................................................................................................... 16

3.1. Определение геометрических параметров зубчатого механизма........................................ 16

3.2. Построение плана линейных скоростей.................................................................................. 19



3.3. Построение плана угловых скоростей..................................................................................... 20

4. Синтез кулачкового механизма................................................................................................ 21

4.1. Построение графика аналогов ускорений............................................................................... 21

4.2. Построение графика аналогов скоростей................................................................................ 22

4.3. Построение графика аналогов перемещений......................................................................... 22

4.4. Нахождение минимального начального радиуса кулачка..................................................... 22

4.5. Построение профиля кулачка................................................................................................... 23

Список литературы........................................................................................................................ 24


1. Кинематический анализ плоского рычажного механизма.


Дано:

Схема плоский рычажного механизма.

Геометрические параметры механизма:

l ОА =125 мм;

l АВ =325 мм;

l АС =150 мм;

Необходимо построить механизм в 12 положениях, планы мгновенных скоростей для каждого из этих положений, планы мгновенных ускорений для любых 2-х положений, а также диаграммы перемещений, скоростей и ускорений.

1.1 Построение 12 положений плоского рычажного механизма.

Строим окружность радиусом ОА. Тогда масштабный коэффициент будет:

Выбираем начальное положение механизма и от этой точки делим окружность на 12 равных частей. Центр окружности (т. О) соединяем с полученными точками. Это и будут 12 положений первого звена.

Через т. О проводим горизонтальную прямую линию Х-Х. Затем строим окружности радиусом АВ с центрами в ранее полученных точках. Соединяем точки В 0 , В 1 , В 2 ,…,В 12 (пересечения окружностей с прямой Х-Х) с точками 0, 1, 2, …, 12. Получим 12 положений второго звена.

От т. О откладываем вверх отрезок b. Получим точку О 1 . Из неё радиусом О 1 D проводим окружность.

На отрезках АВ 0 , АВ 1 , АВ 2 , …, АВ 12 от точки А откладываем расстояние равное АС. Получим точки С 0 , С 1 , С 2 , …, С 12 . Через них проводим дуги радиусом DC до пересечения с окружностью с центром в точке О 1 . Соединяем точки С 0 , С 1 , С 2 , …, С 12 с полученными. Это будут 12 положений третьего звена.

Точки D 0 , D 1 , D 2 , …, D 12 соединяем с т. О 1 . Получим 12 положений четвёртого звена.

От самой верхней точки окружности с центром в т.О1 откладываем горизонтально отрезок равный a. Через его конец проводим вертикальную прямую Y-Y. Далее из точек D 0 , D 1 , D 2 , …, D 12 строим дуги радиусом DE до пересечения с полученной прямой. Соединяем эти точки с вновь полученными. Это будут 12 положений пятого звена.

Учитывая масштабный коэффициент , размеры звеньев будут:

АВ= l АВ * =325*0.005=1,625 м;

АС= l АС * =150*0,005=0,75 м;

СD= l CD * =220*0.005=1.1 м;

О 1 D= l О1 D * =150*0,005=0,75 м;

DЕ=l DE * =200*0,005=1 м;

а 1 = а* =200*0,005=1 м;

b 1 = b* =200*0.005=1 м.

1.2 Построение планов мгновенных скоростей.

Для построения плана скоростей механизма существуют различные методы, наиболее распространённым из которых является метод векторных уравнений.

Скорости точек О и О 1 равны нулю, поэтому на плане скоростей совпадают с полюсом плана скоростей р.

Положение 0:

Но скорость т.В совпала с полюсом р, следовательно V B =0, а это значит, что скорости всех остальных точек тоже совпадут с полюсом и будут равны нулю.

Аналогично строятся планы мгновенных скоростей для положений 3, 6, 9, 12.

Положение 1 :

Скорость т.А получаем из уравнения:

Линия действия вектора скорости т.А перпендикулярна звену ОА, а сам направлен в сторону вращения звена.

На плане мгновенных скоростей строим отрезок (pа) ┴ ОА, его длина (ра)=45мм. Тогда масштабный коэффициент равен:

Скорость т.В получаем из уравнений:

, где V BA ┴ ВА, а V ВВ0 ║Х-Х

Из т.a на плане скоростей строим прямую ┴ звену ВС, а из т.р проводим горизонтальную прямую. В пересечении получим т.b. Соединяем т.а и т.b. Это будет вектор скорости т.В (V B).

V B = pb* = 0.04*15.3 = 0.612

Скорость т.С определяем с помощью теоремы подобия и правила чтения букв. Правило чтения букв заключается в том, что порядок написания букв на плане скоростей или ускорений жёсткого звена должен в точности соответствовать порядку написания букв на самом звене.

Из пропорции:

Можно определить длину отрезка ас:

Отложим от т.а отрезок равный 19,2 мм, получим т.с, соединим её с полюсом, получим вектор скорости т.С (V C).

Скорость т.D определяется с помощью решения системы геометрических уравнений:

, где V DC ┴ DC, а V DO 1 ┴ DO 1

Из т.c на плане скоростей строим прямую ┴ звену DС, а из т.р проводим прямую ┴ DO 1 . В пересечении получим т.d. Соединяем т.d с полюсом, получим вектор скорости т.D (V D).

V D = pd* = 0.04*37.4 = 1.496

Скорость т.Е находим также из решения системы уравнений:

, где V ED ┴ ED, а V EE 0 ║Y-Y

Из т.d на плане скоростей строим прямую ┴ звену DE, а из т.р проводим вертикальную прямую. В пересечении получим т.е. Соединяем т.а и т.b. Это будет вектор скорости т.В (V B).

V Е = pе* = 0.04*34,7 = 1,388

Аналогично строятся планы мгновенных скоростей для 2, 3, 4, 5, 7, 8, 10, 11 положений механизма.

1.3 Построение планов мгновенных ускорений.

Ускорения точек О и О 1 равны нулю, поэтому на плане ускорений они совпадут с полюсом плана ускорений π.

Положение 0:

Ускорение точки А находим:

На плане мгновенных ускорений строим отрезок πа ║ ОА, его длина (πа)=70 мм. Тогда масштабный коэффициент:

Направление ускорения т.В и т.А ║ прямой Х-Х, ┴ ВА, следовательно ускорение т.В совпадёт с концом вектора мгновенного ускорения т.А, а это значит, что и ускорения всех остальных точек механизма совпадут с ним.

Положение 7:

Ускорение точки А находим:

На плане мгновенных ускорений строим отрезок πа ║ ОА, его длина (πа)=70 мм.

Ускорение точки В можно найти с помощью решения векторного уравнения:

От т.а откладываем отрезок равный 21 мм ║ АВ, затем от конца полученного вектора строим отрезок ┴ АВ, а через полюс проводим горизонтальную прямую. Соединяя тоску пересечения с полюсом, получим вектор ускорения т.В.

Ускорение т.C находим с помощью теоремы подобия и правила чтения букв:

Следовательно

Ускорение точки D можно найти с помощью решения системы векторных уравнений:

От т.с откладываем отрезок равный 14,5 мм ║ DC, затем от конца полученного вектора строим отрезок ┴ DС.

Из т. π строим отрезок равный 1,75 мм ║ O 1 D, затем через конец полученного вектора проводим прямую ┴ O 1 D. Соединяя точку пересечения прямой ┴ O 1 D и прямой ┴ DС с полюсом, получим вектор ускорения т.D.

Ускорение точки E можно найти с помощью решения системы векторных уравнений:

Направление ускорения точки E ║ ED, поэтому через полюс проводим горизонтальную прямую, а от т.конца вектора ускорения т.D строим отрезок равный 1,4 мм ║ ED, затем от конца полученного ве6ктора проводим прямую ┴ ЕD. Соединяя точку пересечения прямой ║ ED и прямой ┴ ЕD с полюсом, получаем вектор ускорения точки Е.

1.4 Построение диаграммы перемещений выходного звена.

Диаграмма перемещений выходного звена получается в результате построения отрезков, которые берутся с чертежа плоского рычажного механизма в 12 положениях с учётом масштабного коэффициента

1.5 Построение диаграммы скоростей выходного звена.

Диаграмма скоростей выходного звена получается в результате графического дифференцирования методом приращений диаграммы перемещений выходного звена. Этот метод по сути является методом хорд. Если постоянное полюсное расстояние Н взять равным величине интервала Δt, тогда нет необходимости в проведении лучей через полюс П, так как в этом случае отрезки h i являются приращениями функции S(t) на интервале Δt.

Т. е. на диаграмме перемещений строится вертикальный отрезок от первого деления до пересечения с графиком. Затем из точки пересечения откладывается горизонтальный отрезок до пересечения со следующим делением. Потом от полученной точки снова откладывается вертикальный отрезок до пересечения с графиком. Так повторяется до окончания графика. Полученные отрезки строят на диаграмме скоростей с учётом масштабного коэффициента, но не от первого деления, а на пол деления раньше:

1.6 Построение диаграммы ускорений выходного звена.

Строится аналогично диаграмме скоростей выходного звена механизма


2. Силовой анализ плоского рычажного механизма.

Дано:

l ОА = 125 мм;

l АВ = 325 мм;

l АС = 150 мм;

l CD = 220 мм;

l О1 D = 150 мм;

l DE = 200 мм;

F max = 6.3 кН;

m К = 25 кг/м;

Диаграмма сил полезных сопротивлений.

Необходимо определить реакции в кинематических парах и уравновешивающий момент на входном валу механизма.

2.1 Определение нагрузок, действующих не звенья механизма.

Вычислим силы тяжести. Равнодействующие этих сил расположены в центрах масс звеньев, а величины равны:

G 1 = m 1 * g = m К * l ОА * g = 25 * 0.125 * 10= 31.25 H

G 2 = m 2 * g = m К * l B А * g = 25 * 0.325 *10 = 81.25 H

G 3 = m В * g = 20 * 10 = 200 Н

G 4 = m 4 * g = m К * l CD * g = 25 * 0.22 * 10 = 55 H

G 5 = m 5 * g = m К * l О 1D * g = 25 * 0.15 * 10 = 37,5 H

G 6 = m 6 * g = m К * l DE * g = 25 * 0.2 * 10 = 50 H

G 7 = m 7 * g = 15 * 10 = 150 H

Найдём силу полезного сопротивления по диаграмме сил полезных сопротивлений. Для рассматриваемого положения механизма эта сила равна нулю.

Данных для вычисления сил вредных сопротивлений нет, поэтому их не учитываем.

Для определения инерционных нагрузок требуются ускорения звеньев и некоторых точек, поэтому воспользуемся планом ускорений для рассматриваемого положения механизма.

Определим силы инерции звеньев. Ведущее звено, как правило, уравновешено, то есть центр масс его лежит на оси вращения, а равнодействующая сил инерции равна нулю. Для определения сил инерции других звеньев механизма предварительно определим ускорения их центров масс:

а S2 = * πS 2 = 0.4 * 58.5 = 23.4 м/с 2

а B = * πb = 0,4 * 64.9 = 25.96 м/с 2

а S4 = * πS 4 = 0.4 * 65.7 = 26.28 м/с 2

а D = * πd = 0,4 * 78.8 = 31.52 м/с 2

а S6 = * πS 6 = 0.4 * 76.1 = 30.44 м/с 2

а E = * πe = 0,4 * 74.5 = 29.8 м/с 2

Теперь определим силы инерции:

F И2 = m 2 * а S2 = 8.125 * 23.4 = 190 H

F И3 = m 3 * а B = 20 * 25.96 = 519 H

F И4 = m 4 * а S4 = 5.5 * 26.28 = 145 H

F И6 = m 6 * а S6 = 5 * 30.44 = 152 H

F И7 = m 7 * а E = 15 * 29.8 = 447 H

Для определения моментов сил инерции необходимо найти моменты инерции масс звеньев и их угловые ускорения. У звеньев 3 и 7 массы сосредоточены в точках, у звена 1 и угловое ускорение равно нулю, поэтому моменты сил инерции этого звена равна нулю.

Примем распределение массы звеньев 2, 4 и 6 равномерно по их длинам. Тогда инерция звеньев относительно точек S i равен:

J S 2 = m 2 * l 2 2 /12 = 8,125 * 0,325 2 /12 = 0,0715 кг*м 2

J S 4 = m 4 * l 4 2 /12 = 5,5 * 0,22 2 /12 = 0,0222 кг*м 2

J S 6 = m 6 * l 6 2 /12 = 5 * 0,2 2 /12 = 0,0167 кг*м 2

Угловые ускорения звеньев 2, 4, 5 и 6 определяются по относительным тангенциальным ускорениям, поэтому:

Найдём моменты сил инерции 2, 4, 6 звеньев:

М И2 = J S 2 * = 0,0715 * 82,22 = 5,88 Нм

М И4 = J S 4 * = 0,0222 * 42,73 = 0,95 Нм

М И6 = J S 4 * = 0,0167 * 35,6 = 0,59 Нм

2.2 Силовой расчёт группы звеньев 6, 7.

Выделим из механизма группу звеньев 6, 7, расставим все реальные нагрузки и силы и моменты сил инерции.

Действие на рассматриваемую группу отброшенных звеньев заменим силами. В т.Е на ползун 7 действует сила со стороны стойки - направляющей ползуна. В отсутствии трения сила взаимодействия направлена перпендикулярно к контактирующим поверхностям, т. е. перпендикулярно направлению движения ползуна, а влево или вправо, пока не известно, поэтому направим эту силу предварительно вправо. Если после вычислений окажется, что она отрицательна, то необходимо изменить направление на противоположное.

В индексе обозначения ставятся две цифры: первая показывает со стороны какого звена действует сила, а вторая - на какое звено эта сила действует.

В точке D со стороны звена 5 на звено 6 действует сила R 56 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

На ползун Е действует ещё сила полезного сопротивления, но она равна нулю.

Расставим на выделенной группе звеньев все перечисленные силы и определим неизвестные реакции в кинематических парах Е, D - R E и R 56 .

Сначала определяем тангенциальную составляющую силы R 56 из условия равновесия звена 6. Приравняв нулю сумму моментов сил относительно точки Е, получим:

Момент сил инерции необходимо делить на потому, что звенья изображены в масштабе , и в расчётах используются их значения снятые с чертежа.

Нормальная составляющая силы R 56 и сила R E находятся графическим методом из векторного многоугольника, построенного для группы звеньев 6, 7. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Так как направления линий действия нормальной составляющей силы R 56 и R E известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.

Из построений видно, что направление силы R 76 - от n к m, а силы R 67 - от m к n.

R 56 = * = 1/4 * 209,7 = 52.43 Н

R E = * = 1/4 * 69,3 = 17.33 Н

2.3 Силовой расчёт группы звеньев 5,4.

Выделим из механизма группу звеньев 4, 5, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке D действует сила R 65 , которая равна R 56 и направлена противоположно ей.

Неизвестными являются: сила взаимодействия 4 и 2 звена, сила взаимодействия 5 звена и стойки.

В точке С со стороны звена 2 на звено 4 действует сила R 24 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

Сначала определяем тангенциальную составляющую силы R 24 из условия равновесия звена 4. Приравняв нулю сумму моментов сил относительно точки D, получим:

Нормальная составляющая силы R 24 и сила R O 1 находятся графическим методом из векторного многоугольника, построенного для группы звеньев 5, 4. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Определим величины реакций в кинематических парах:

R 24 = * = 1 * 26.6 = 26.6 Н

R O 1 = * = 1 * 276.6 = 276.6 Н

2.4 Силовой расчёт группы звеньев 2, 3.

Выделим из механизма группу звеньев 2, 3, расставим все реальные нагрузки и силы и моменты сил инерции, реакции отброшенных звеньев. В точке C действует сила R 24 , которая равна R 24 и направлена противоположно ей.

Неизвестными являются: сила взаимодействия 1 и 2 звена, сила взаимодействия 2 звена и ползуна.

В точке С со стороны звена 1 на звено 2 действует сила R 12 . Ни величина, ни направление этой силы неизвестны, поэтому определяем её по двум составляющим: одну направим вдоль звена и назовём нормальной составляющей, а вторую перпендикулярно звену и назовём тангенциальной составляющей. предварительное направление этих составляющих выбираем произвольно, а действительное направление определиться знаком силы после вычислений.

Сначала определяем тангенциальную составляющую силы R 12 из условия равновесия звена 2. Приравняв нулю сумму моментов сил относительно точки А, получим:

Нормальная составляющая силы R 12 и сила R В находятся графическим методом из векторного многоугольника, построенного для группы звеньев 2, 3. Известно, что при силовом равновесии многоугольник, составленный из векторов сил, должен быть замкнутым:

Так как направления линий действия нормальной составляющей силы R 24 и R O 1 известны, то построив предварительно незамкнутый многоугольник из известных векторов сил, можно обеспечить его замыкание, если провести через начало первого и конец последнего вектора прямые, параллельные направлениям искомых сил. Точка пересечения этих прямых определит величины искомых векторов и их действительные направления.

Определим величины реакций в кинематических парах:

R 12 = * = 1/2 * 377,8 = 188,9 Н

R В = * = 1/2 * 55,4 = 27,7 Н

2.5 Силовой расчёт ведущего звена.

Ведущее звено обычно уравновешено, то есть центр масс его находится на оси вращения. Для этого требуется, чтобы сила инерции противовеса, установленного на продолжении кривошипа ОА, равнялась силе инерции звена ОА:

m = M 1 /l OA = 3.125/0.125 = 25 кг - масса единицы длины.

Отсюда можно определить массу противовеса m 1 , задавшись её расстоянием r 1 от оси вращения. При r 1 = 0,5 * l m 1 = M 1 (масса звена ОА).

В точке А на 1 звено со стороны 2 звена действует сила R 21 , момент которой относительно точки О равен уравновешивающему моменту.

В точке О при этом возникает реакция R О, равная и противоположно направленная силе R 21 . Если сила тяжести звена соизмерим с силой R 21 , то её необходимо учесть при определении реакции опоры О, которая может быть получена из векторного уравнения:

2.6 Силовой расчёт ведущего звена методом Жуковского.

К плану мгновенных скоростей механизма, повернутому на 90 0 в сторону вращения, прикладываем все силы, действующие на механизм, и составляем уравнение моментов действующих сил относительно полюса.