Микросхема lm358 и ее применение схема. LM358 схема включения

Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

На первом выводе расположено много резисторов, но найти нужный - не составит труда, если прозвонить все мультиметром.

После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

Печатная плата была разведена на скорую руку , но получилось довольно неплохо.

Теперь остается соединить все по картинке и приступить к монтажу.

Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

Амперметр можно взять советский аналоговый или цифровой.

Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

Прикрепленные файлы :

В этой статье поговорим еще об одном зарядном устройстве для автомобиля. Заряжать будем аккумуляторы стабильным током. Схема зарядного изображена на рисунке 1.

В качестве сетевого трансформатора в схеме применен перемотанный трансформатор от лампового телевизора ТС-180, но подойдут и ТС-180-2 и ТС-180-2В. Для перемотки трансформатора сначала его аккуратно разбираем, не забыв при этом заметить какими сторонами был склеен сердечник, путать положение U-образных частей сердечника нельзя. Затем сматываются все вторичные обмотки. Экранирующую обмотку, если будете пользоваться зарядным только дома, можно оставить. Если же предполагается использование устройства и в других условиях, то экранирующая обмотка снимается. Снимается так же и верхняя изоляция первичной обмотки. После этого катушки пропитываются бакелитовым лаком. Конечно пропитка на производстве происходит в вакуумной камере, если таких возможностей нет, то пропитаем горячим способом – в горячий лак, разогретый на водяной бане, бросаем катушки и ждем с часик, пока они не пропитаются лаком. Потом даем лишнему лаку стечь и ставим катушки в газовую духовку с температурой порядка 100… 120˚С. В крайнем случае обмотку катушек можно пропитать парафином. После этого восстанавливаем изоляцию первичной обмотки той же бумагой, но тоже пропитанной лаком. Далее мотаем на катушки по… сейчас посчитаем. Для уменьшения тока холостого хода, а он явно возрастет, так как необходимой ферропасты для склеивания витых, разрезных сердечников у нас нет, будем использовать все витки обмоток катушек. И так. Число витков первичной обмотки (см. таблицу) равно 375+58+375+58 = 866витков. Количество витков на один вольт равно 866витков делим на 220 вольт получаем 3,936 ≈ 4витка на вольт.


Вычисляем количество витков вторичной обмотки. Зададимся напряжением вторичной обмотки в 14 вольт, что даст нам на выходе выпрямителя с конденсаторами фильтра напряжение 14 √2 = 19,74 ≈ 20вольт. Вообще, чем меньше это напряжение, тем меньшая бесполезная мощность в виде тепла будет выделяться на транзисторах схемы. И так, 14 вольт умножаем на 4витка на вольт, получаем 56 витков вторичной обмотки. Теперь зададимся током вторичной обмотки. Иногда требуется быстрехонько подзарядить аккумулятор, а значит требуется увеличить на некоторое время зарядный ток до предела. Зная габаритную мощность трансформатора – 180Вт и напряжение вторичную обмотки, найдем максимальный ток 180/14 ≈ 12,86А. Максимальный ток коллектора транзистора КТ819 – 15А. Максимальная мощность по справочнику данного транзистора в металлическом корпусе равна 100Вт. Значит при токе12А и мощности 100Вт падение напряжения на транзисторе не может превышать… 100/12 ≈ 8,3 вольта и это при условии, что температура кристалла транзистора не превышает 25˚С. Значит нужен вентилятор, так как транзистор будет работать на пределе своих возможностей. Выбираем ток равный 12А при условии, что в каждом плече выпрямителя уже будет стоять по два диода по 10А. По формуле:

0,7 умножаем на 3,46, получаем диаметр провода?2,4мм.

Можно уменьшить ток до 10А и применить провод диаметром 2мм. Для облегчения теплового режима трансформатора вторичную обмотку можно не закрывать изоляцией, а просто покрыть дополнительно еще слоем бакелитового лака.

Диоды КД213 устанавливаются на пластинчатые радиаторы 100×100х3мм из алюминия. Их можно установить непосредственно на металлический корпус зарядного через слюдяные прокладки с использованием термопасты. Вместо 213- х можно применить Д214А, Д215А, Д242А, но лучше всего подходят диоды КД2997 с любой буквой, типовое значение прямого падения напряжения у которых равно 0,85В, значит при токе заряда 12А на них выделится в виде тепла 0,85 12 = 10Вт. Максимальный выпрямленный постоянный ток этих диодов равен 30А, да и стоят они не дорого. Микросхема LM358N может работать с напряжениями входного сигнала близкими к нулю, отечественных аналогов я не встречал. Транзисторы VT1 и VT2 можно применить с любыми буквами. В качестве шунта применена полоска из луженой жести. Размеры моей полоски вырезанной из консервной банки ()– 180×10х0,2мм. При указанных на схеме номиналах резисторов R1,2,5 ток регулируется в пределах примерно от 3 до 8А. Чем меньше номинал резистора R2, тем больше ток стабилизации устройства. Как рассчитать добавочное сопротивление для вольтметра прочитайте .

Об амперметре. У меня, полоска вырезанная по указанным выше размерам, совершенно случайно имеет сопротивление 0,0125Ом. Значит при прохождении через ее тока в 10А, на ней упадет U=I R = 10 0,0125=0,125В = 125млВ. В моем случае примененная измерительная головка имеет сопротивление 1200 Ом при температуре 25˚С.

Лирическое отступление. Многие радиолюбители, основательно подгоняя шунты для своих амперметров, почему то никогда не обращают внимание на температурную зависимость всех элементов собираемых ими схем. Разговаривать на эту тему можно до бесконечности, я вам приведу лишь небольшой пример. Вот активное сопротивление рамки моей измерительной головки при разных температурах. И для каких условий рассчитывать шунт?

Это означает, что ток выставленный в домашних условиях, не будет соответствовать току выставленном по амперметру в холодном гараже зимой. Если вам это по барабану, то сделайте просто переключатель на 5,5А и 10… 12А и ни каких приборов. И не бойся, как бы их не разбить, это еще один большой плюс зарядного устройства со стабилизацией тока заряда.

И так, дальше. При сопротивлении рамки равном 1200Ом и токе полного отклонения стрелки прибора 100мкА нам нужно подать на головку напряжение 1200 0,0001=0,12В = 120млВ, что меньше, чем падение напряжения на сопротивлении шунта при токе 10А. Поэтому последовательно измерительной головке поставьте дополнительный резистор, лучше подстроечный, что бы не мучиться с подборкой.

Монтаж стабилизатора выполнен на печатной плате (см. фото 3). Максимальный ток заряда для себя я ограничил шестью амперами, поэтому при токе стабилизации 6А и падении напряжения на мощном транзисторе 5В, выделяемая мощность при этом равна 30Вт, и обдуве вентилятором от компьютера, данный радиатор нагревается до температуры 60 градусов. С вентилятором это много, необходим более эффективный радиатор. Примерно определить необходимую . Мой вам всем совет — ставьте радиаторы рассчитанные для работы ПП приборов без куллеров, пусть лучше размеры прибора увеличатся, но при остановке этого куллера, ни чего не сгорит.

При анализе выходного напряжения осциллограмма его была сильно зашумлена, что говорит о нестабильности работы схемы т.е. схема подвозбуждалась. Пришлось дополнить схему конденсатором С5, что обеспечило стабильность работы устройства. Да, еще, для того, что бы уменьшить нагрузку на КТ819, я уменьшил напряжение на выходе выпрямителя до 18В (18/1,41 = 12,8В т.е. напряжение вторичной обмотки у моего трансформатора равно 12,8В). Скачать рисунок печатной платы. До свидания. К.В.Ю.

При настройке всевозможных радиоэлектронных устройств зачастую бывает, необходим блок питания, в котором реализована функция плавной регулировки, как выходного напряжения, так и значения тока по перегрузке.

Защита блока питания от перегрузки

В большинстве простых блоков, реализована защита блока питания от перегрузки только по превышению максимального тока нагрузки. Подобная электронная защита, главным образом, предназначается для самого блока питания, а не для подключенной к нему нагрузки.

Для надежного функционирования, как блока питания, так и подсоединенного к нему электронного устройства, желательно иметь возможность изменения порога срабатывания защиты по току в больших пределах, причем при срабатывании защиты подключенная нагрузка должна быть обесточена.

Приведенная в данной статье схема является еще одним вариантом , позволяющая производить плавную регулировку всех перечисленных выше параметров.

Описание работы регулируемого блока питания

(DA1.1) построен регулируемый стабилизатор напряжения. С вывода R2 на его прямой вход (вывод 3) идет опорное напряжение, величина которого устанавливается стабилитроном VD1, а на инверсный вход (вывод 2) поступает потенциал ООС с эмиттера транзистора VT1 через резисторный делитель напряжения R10 и R7.

Отрицательно обратная связь создает баланс напряжений на обоих входах ОУ LM358, возмещая воздействие дестабилизирующих причин. Путем вращения ручки потенциометра R2 осуществляется изменение выходного напряжения блока питания.

Блок защиты от перегрузки по току построен на втором операционном усилителе DA1.2, входящем в состав микросхемы LM358 , который используется в данной схеме в качестве компаратора. На его прямой вход через сопротивление R14 идет напряжение с датчика тока нагрузки (сопротивление R13), а на инверсный вход поступает опорное напряжение, постоянство которого обеспечивает диод VD2.

До тех пор пока падение напряжения, формируемое током нагрузки на сопротивлении R13, ниже опорного, потенциал на выходе 7 операционного усилителя DA1.2 практически равен нулю. В том случае, если ток нагрузки превзойдет допустимый, потенциал на выходе DA1.2 возрастет до напряжения питания. В результате этого через сопротивление R9 пойдет ток, который откроет транзистор VT2 и зажжет светодиод HL1. Диод VD3 начинает пропускать ток и сквозь сопротивление R11 шунтирует электрическую цепь ПОС. Транзистор VT2 подсоединяет сопротивление R12 параллельно стабилитрону VD1, и как следствие этого напряжение на выходе блока питания снижается фактически до нуля из-за закрытия транзистора VT1.

Заново подключить нагрузку возможно непродолжительным выключением сетевого питания или путем нажатия на кнопку SA1. Для защиты транзистора VT1 от обратного напряжения, идущего с емкости С5, которое возникает при отсоединении нагрузки от блока питания, в схему добавлен диод VD4.

Детали блока питания

Транзистор VT2 возможно поменять на . Транзистор VT1 можно заменить на произвольный из серий КТ827, КТ829. Диоды VD2 — VD4 возможно применить КД522Б. Сопротивление R13 возможно собрать из трех впараллель соединенных резисторов МЛТ-1 сопротивлением по 1 Ом каждый. Стабилитрон VD1 любой с напряжением стабилизации 7…8 вольт и током от 3 до 8 мА. Емкости СЗ, С4 произвольные пленочные или керамические. Электролитические конденсаторы: С1 — К50-18 или аналогичный зарубежный, другие — марки К50-35. Кнопка SA1 без фиксации.

Самый популярный двухканальный операционный усилитель LM358, LM358N. Операционник относится к серии LM158, LM158A, LM258, LM258A, LM2904, LM2904V. Имеет множество схем включения, аналогов и datasheet.

Микросхемы LM358 и LM358N идентичны по параметрам и отличаются только корпусом.

Вам будут интересны даташиты и характеристики других ИМС , . Они применяются совместно с импульсными стабилизаторами и блоках питания.


  • 1. Характеристики, описание
  • 2. Таблица характеристик.
  • 3. Цоколёвка, распиновка
  • 4. Аналог
  • 5. Типовые схемы включения
  • 6. Datasheet, даташит LM358 LM358N

Характеристики, описание

Питание ИМС может быть однополярным от 3 до 32В. Операционный усилитель стабильно работает на стандартных 3,3В. Двухполярное питание от 1,5 до 16 Вольт. При указанной температуре 0° до 70° характеристики остаются в пределах нормы. Если количество градусов выйдет за эти пределы, то появится отклонение параметров.

Многих интересует описание на русском LM328N, но даташит большой, основная часть понятна и без перевода. Чтобы вы не искали LM358 datasheet на русском, составил таблицу основных параметров.

Несколько популярных datasheet для скачивания:

Таблица характеристик.

Параметр LM358, LM358N
Питание, вольт 3-32В
Биполярное питание ±1,5В до ±16В
Потребляемый ток 0,7мА
Напряжение смещения по входу 3мВ
Ток смещения компенсации по входу 2нА
Входной ток смещение 20нА
Скорость нарастания на выходе 0,3 В/мсек
Ток на выходе 30 — 40мА
Максимальная частота 0,7 до 1,1 МГц
Коэффициент дифференциального усиления 100дБ
Рабочая температура 0° до 70°

Микросхемы различных производителей могут иметь разные параметры, но всё в пределах нормы. Единственное может сильно отличаться максимальная частота у одних она 0,7МГц, у других до 1,1МГц. Вариантов использования ИМС накопилось очень много, только в документации их около 20 штук. Радиолюбители расширили это количество более 70 схем.

Типовой функционал из datasheet на русском:

  1. компараторы;
  2. активные RC фильтры;
  3. светодиодный драйвер;
  4. суммирующий усилитель постоянного тока;
  5. генератор импульсов и пульсаций;
  6. низковольтный детектор пикового напряжения;
  7. полосовой активный фильтр;
  8. для усиливания с фотодиода;
  9. инвертирующий и не инвертирующий усилитель;
  10. симметричный усилитель;
  11. стабилизатор тока;
  12. инвертирующий усилитель переменного тока;
  13. дифференциальный усилитель постоянного тока;
  14. мостовой усилитель тока.

Цоколёвка, распиновка

Аналог

..

Большая популярность определяет и большое количество аналогов LM358 LM358N. В зависимости от производителя характеристики могут немного меняться, но всё в пределах допуска. Перед заменой проверьте электрические характеристики у изготовителя, вдруг вам не подойдёт. Схемы включения аналогичны. Аналогов более 30 штук, покажу первую дюжину полностью схожих:по параметрам:

  1. КР1040УД1
  2. КР1053УД2
  3. КР1401УД5
  4. GL358
  5. NE532
  6. OP295
  7. OP290
  8. OP221
  9. OPA2237
  10. TA75358P
  11. UPC1251C
  12. UPC358C

Типовые схемы включения

Пришлось просмотреть несколько спецификаций от разных фабрик, чтобы найти самый полноценный. Большинство короткие и малоинформативные. Чтобы было максимально понятно, как работают схемы включения LM358 и LM358N, ознакомитесь с типовым включением.


Datasheet, даташит LM358 LM358N

Сфера применения, указанная производителями:

  1. блюрэй плееры и домашние кинотеатры;
  2. химические и газовые сенсоры;
  3. ДВД рекордеры и плееры;
  4. цифровые мультиметры;
  5. сенсор температуры;
  6. системы управления двигателями;
  7. осциллографы;
  8. генераторы;
  9. системы определения массы.

На этот раз полноценного тестирования не получилось ввиду выхода устройства из строя:(
Представляет собой понижающий преобразователь напряжения с дополнительной функцией регулируемого токоограничения и контроля. Это может быть полезно не только для зарядки аккумуляторов, но и для защиты от перегрузки и КЗ.

Заявленные технические характеристики:
Размер: 50*26*11 (l * W * h) (мм)
Рабочая температура:-40° до + 85°
Регулирование напряжения: ± 2.5% (вероятно имелась в виду точность поддержания)
Регулировка нагрузки: ± 0.5% (вероятно имелась в виду точность поддержания)
Пульсация выходного сигнала: 20мВ
Частота переключения: 300 кГц
Эффективность преобразования: до 95%
Выходной ток: регулируемый максимально 5А
Выходное напряжение: 0.8 В-30 В
Входное напряжение: 5 В-32 В
Не синхронное выпрямление








Собран на базе XL4005E1 от XLSEMI, которая по параметрам выгодно отличается от популярной LM2596S


На сдвоенном операционном усилителе LM358 собрана схема регулируемого токоограничения и компаратор для индикации окончания заряда.

Реальная принципиальная схема устройства


Выходное напряжение регулируется в пределах от 0,8В до почти входного.
Точность установки малых напряжений (менее 3В) невысока - слишком резко оно меняется при вращении подстроечника. Если необходима высокая точность установки малых выходных напряжений - придётся заменить подстроечник 10кОм на меньший номинал:
1,0кОм - 1,4-3,5В
1,5кОм - 1,4-5В
2,2кОм - 1,4-7В

Выходной ток регулируется в пределах от 0,03А до 5,5А
В качестве датчика тока применён шунт на базе резистора SMD 2512 0,05Ом. Очень часто производители в качестве шунта используют печатную дорожку, что является плохим тоном (ток плавает с нагревом).
Подключение входа и выхода универсальное - клеммник + контакты под пайку.
Имеются дополнительные контакты блокировки работы преобразователя.

Отдельно стоящий красный светодиод показывает работу в режиме ограничения тока. Синий светодиод показывает режим заряда аккумулятора, красный рядом с ним - режим окончания заряда (уменьшение тока до 10% от уставки).

Дроссель явно сделан не под этот преобразователь, т.к. не тянет 5А, намотан в один провод и имеет повышенную индуктивность (40мкГн). Скорее всего это дроссель для преобразователя на LM2596S (3А 150кГц).
Реальная ёмкость конденсаторов 470мкФ оказалась 360мкФ, ESR довольно плохой 0,10 Ом, однако дополнительная керамика должна помочь уменьшить выходные пульсации.
Ещё одна особенность: падение напряжения на шунте не компенсировано, т.е. выходное напряжение немного зависит от нагрузки - на максимальном токе 5А выходное напряжение снижается на 0,25В

Естественно китайцы не смогли не накосячить в схеме:)
1. При установленном напряжении менее 1,4В некорректно работает схема токоограничения, т.к. операционник уже не может корректировать напряжение на управляющем входе XL4005E1. Решение - добавить сопротивление 200 Ом последовательно с подстроечником. Также, при малом выходном напряжении перестаёт светиться синий светодиод.
2. Напряжение с шунта идёт на входы операционников напрямую без токоограничивающих резисторов. Это может привести к кратковременному повышению напряжения на их входах свыше 5В при замыкании выхода. Решение - добавить резистор 10кОм в разрыв между входами ОУ и шунтом.
3. Уменьшить индуктивность дросселя, просто отмотав с него 6 витков.
После всех доработок схема получается такая:

Проверку производил при входном напряжении 12,5В и выходном напряжении 5В.
На выходном токе 3A XL4005 разогрелась до 65ºС, дроссель до 91ºС, нагрев в допустимых пределах
На выходном токе 4A А XL4005 разогрелась до 82ºС, дроссель до 106ºС, нагрев слишком велик
На выходном токе 5A XL4005 разогрелась до 97ºС, дроссель до 132ºС, быстро перегреваются все силовые элементы включая даже шунт и конденсаторы.
Через 3 минуты такой работы, ток пропал и тестирование пришлось прекратить. Ну, думаю, хорошо, заявленная термозащита XL4005 сработала, но после остывания преобразователь не заработал:(Остальные элементы не пострадали. Видимо, не стоило максимально нагружать преобразователь без дополнительного радиатора.
Надеюсь, это дефект конкретного экземпляра, а не всей партии.
Преобразователь в дальнейшем буду ремонтировать, как придут заказанные микросхемы.
Претензий продавцу не предъявлял.

Вывод: интересная железка, но заявленный ток 5A совершенно не держит, необходимо ограничиться током не более 2,5-3A

Планирую купить +95 Добавить в избранное Обзор понравился +58 +121