Как собрать швп с двумя гайками. Шарико-винтовая передача движения

Шариковая винтовая передача (ШВП) состоит из винта и гайки и служит для преобразования вращательного движения в поступательное. В шарико-винтовых передачах на винте 1 и в гайке 2 выполнены винтовые канавки (резьба) криволинейного профиля, служащие дорожками качения для шариков, размещенных между витками винта и гайки. Наибольшее распространение получила резьба с полукруглым профилем. При этом вращение закрепленной от осевых перемещений гайки вызывает поступательное перемещение винта, или вращение закрепленного от осевых перемещений винта приводит к поступательному перемещению гайки.

Основные геометрические параметры передачи: номинальный диаметр d 0 , т.е. диаметр расположения центров тел качения, шаг резьбы Р и диаметр D w тел качения (обычно D w = 0,6Р).

Достоинства шарико-винтовой передачи: возможность создания больших осевых сил; малые потери на трение (КПД передачи 0,9 и выше); возможность получения поступательного перемещения с высокой точностью; малые габариты при высокой несущей способности; значительный ресурс.

К недостаткам можно отнести сложность конструкции гайки, необходимость высокой точности изготовления и хорошей защиты передачи от загрязнений. Шарико-винтовые передачи применяют в механизмах точных перемещений, в следящих системах и в ответственных силовых передачах (станкостроение, робототехника, авиационная и космическая техника, атомная энергетика, кузнечно-прессовое оборудование и др.).

УСТРОЙСТВО И ПРИНЦИПЫ РАБОТЫ

При вращении винта шарики увлекаются в движение по винтовым канавкам, поступательно перемещают гайку и. выкатываясь из резьбы, через перепускной канал (канал возврата) возвращаются в исходное положение. Таким образом перемещение шариков происходит по замкнутому внутри гайки контуру. Наиболее распространена конструкция ШВП. в которой канал возврата соединяет два соседних витка.

В станкостроении применяют трехконтурные гайки. Перепускной канал выполняют в специальном вкладыше, который вставляют в овальное окно гайки. В трехконтурной гайке предусматривают три вкладыша, расположенные под углом 120° один к другому и смещенные по длине гайки на один шаг резьбы по отношению друг к другу. Таким образом шарики в гайке разделены на три (по числу рабочих витков) независимых группы.

При работе передачи шарики, пройдя по винтовой канавке на винте путь, равный длине одного или нескольких витков, выкатываются из резьбы в перепускной канал вкладыша и возвращаются обратно в исходное положение на исходный виток гайки.

ПРОФИЛЬ РЕЗЬБЫ

Основные параметры полукруглого профпля резьбы (рис. 1. а):

R = (0,515...0,525) D w - радиус канавок;
α = 45° - угол контакта шариков;
ψ = arctg - угол подъема резьбы (здесь z - число заходов резьбы).


На рис. 1. б показан в нормальном сечении профиль резьбы винта с разгрузочной канавкой, а в табл. 1 приведены размеры разгрузочных канавок по ОСТ 2 РЗ1-5-89 .

1. Размеры разгрузочных канавок, мм

Номинальный диаметр d 0 Шаг резьбы Р b r Номинальный диаметр d 0 Шаг резьбы Р b r
16
25
25
32
32
40
40
40
50
2,5
5,0
10,0
5,0
10,0
5,0
6,0
10,0
5,0
-
1,0
1,5
1,0
1,5
1,0
1,0
1,5
1,0
-
0,55
0,85
0,55
0,85
0,55
0,55
0,85
0,55
50
50
63
80
80
100
100
125
10,0
12,0
10,0
10,0
20,0
10,0
20,0
20,0
1,5
1,8
1,5
1,5
3,0
1,5
3,0
3,0
0,85
0,95
0,85
0,85
1,60
0,85
1,6
1,6

ШВП С ПРЕДВАРИТЕЛЬНЫМ НАТЯГОМ

С целью устранения осевого зазора в сопряжении винт-гайка и повышения тем самым осевой жесткости и точности перемещения ведомого элемента ШВП собирают с предварительным натягом.

Для передачи с полукруглым профилем резьбы натяг создают установкой двух гаек с последующим относительным их осевым смещением. Относительное смещение гаек осуществляют установкой прокладок между ними или их относительным угловым поворотом.

Профиль резьбы и конструкцию гайки (канал возврата шариков, регулирование натяга и т.д.) определяет завод-изготовитель.

Шариковые винтовые передачи применяют в широком диапазоне размеров.

ТИПОРАЗМЕРЫ ШАРИКОВЫХ ВИНТОВЫХ ПЕРЕДАЧ
по ГОСТ 25329-82

Номинальный диаметр,
d o , мм
Номинальный шаг Р, мм
2,5* 3 4 5* 6 8 10* 12 16 20*
6 +
8 +
10 +
12 + + + +
16 + + + + +
20 + + + + +
25 + + + + +
32 + + + + + +
40 + + + + +
50 + + + + + +
63 + + + + + + +
80 + + + + + +
100 + + + + +
125 + + + +
160 + + + +
200 + + + +
* Предпочтительные шаги

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Технические условия на шарико-винтовые передачи, применяемые в станкостроении, установлены ГОСТ 2 РЗ1-5-89 . Этот стандарт распространяется на ШВП, применяемые для комплектации металло- и деревообрабатывающих станков, промышленных роботов, кузнечно-прессового оборудования.

Стандарт устанавливает основные размеры, основные параметры, комплектность, маркировку, порядок и состав приемосдаточных испытаний, упаковку, условия транспортирования и хранения, указания по эксплуатации и гарантии завода-изготовителя централизованно изготовляемых ШВП.

В стандарте учтены требования ISO/DP 8931, ISO/DP 8932, ISO/DP 3408, ISO/DP 9783, ISO/DP 9784 .

Корпусные передачи изготовляют в 4-х исполнениях:

I - ШВП с одной или двумя гайками без корпуса;
II - ШВП с двумя гайками в цилиндрическом корпусе, имеющем фланец;
III - ШВП с двумя гайками в призматическом корпусе, имеющем сквозные крепежные отверстия;
IV - ШВП с двумя гайками в призматическом корпусе, имеющем глухие резьбовые крепежные отверстия.
Применение ШВП исполнения III является непредпочтительным.

По точностным параметрам ШВП разделяют на позиционные и транспортные (ОСТ 2 РЗ1-7-88 ). Позиционые ШВП позволяют произвести косвенное измерение осевого перемещения в зависимости от угла поворота и хода резьбы винта. В транспортных ШВП перемещения измеряют прямым методом с помощью отдельной измерительной систем не зависящей от угла поворота винта.

Классы кинематической и геометрической точности ШВП должны соответствовать ОСТ 2 РЗ 1-4-88 . Согласно этому стандарту" установлены классы точности для позиционных (П) и транспортных (Т) ШВП соответственно: П1, П3, П5, П7 и Т1, ТЗ, Т5, Т7, T9, Т10.

Внутризаводские приемосдаточные нормы кинематической точности должны соответствовать ГОСТ 2 Р31-5-89 .

Согласно ОСТ 2 РЗ1-5-89 качество материалов, обработки и сборки ШВП должно соответствовать ГОСТ 7599-82 , а для поставок на экспорт - ОСТ 2 Н06-1-86 .

ГРУЗОПОДЪЕМНОСТЬ

При проектировании, в соответствии с основными критериями работоспособности шарико-винтовых передач расчет ведут по динамической грузоподъемности для предупреждения усталостного разрушения (выкрашивания рабочих поверхностей) и по статической грузоподъемности для предупреждения пластического деформирования тел и поверхностей качения.

При выборе значений динамической С а и статической С oа грузоподъемностей, а также минимальных и максимальных значений момента T xx холостого хода ШВП можно ориентироваться на данные таблицы 2.

Базовая статическая осевая грузоподъемность С oа - статическая осевая сила (Н), которая вызывает общую остаточную пластическую деформацию шарика, канавок винта и гайки, равную 0,0001 диаметра шарика.

2. Базовые грузоподъемные характеристики ШВП

Типоразмер
d 0 x Р, мм
Грузоподъемность,
Н
Момент холостого хода
T xx , Н·м
статическая С oа динамическая С а min max
16x2,5
25x5
25x10
32x5
32x10
40x5
40x6
40x10
50x5
50x10
50x12
63x10
80x10
80x20
100x10
100x20
125x20
9600
28100
48800
37500
65000
49400
56400
85900
62800
112500
119900
149700
197700
297600
251100
386400
729000
5000
16580
46400
17710
49800
19170
23700
54700
20640
57750
65400
62030
66880
143400
71840
151800
278000
0,05
0,08
0,11
0,18
0,22
0,30
0,32
0,45
0,50
0,48
0,49
0,75
1,23
2,30
2,04
2,75
2,80
0,20
0,32
0,35
0,56
0,60
0,84
0,83
0,95
1,35
1,23
1,09
2,03
3,25
3,88
5,20
5,23
5,50

Примечание . Приведенные значения для корпусных ШВП соответствуют исполнениям II, III и IV.

Базовая динамическая осевая грузоподъемность С а - осевая сила, которую шарико-винтовая передача может воспринимать при базовой долговечности, составляющей 1.000.000 оборотов винта.

Базовые грузоподъемности соответствуют передаче, выполненной из обычно применяемых сталей (см. табл.3). При отличии свойств материала от обычных, а также в зависимости от класса точности, твердости рабочих поверхностей и др. вычисляют значение скорректированной статической и скорректированной динамической грузоподъемности.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Технические требования на основные детали шарико-винтовых передач, применяемых в станкостроении, установлены ОСТ 2 РЗ1-5-89 (табл. 3). Нормы точности винта - по ОСТ 2 РЗ1-4-88.

3. Технические требования на основные детали ШВП


Примечания:
1. Термообработка по РТМ2 МТ11-1-31.
2. Для шариков степень точности 20 по ГОСТ 3722-81.
3. Разноразмерность шариков в одной передаче не более 0,001 мм.
4. Отклонение среднего диаметра шариков при D u

Винты изготовляют также из сталей марок ХВГ и 7Г2ВМ с объемной закалкой, стали марки 8ХВ с закалкой при индукционном нагреве, стали марки 20Х3МВФ с азотированием.
Для гаек применяют сталь марки ХВГ с объемной закалкой и цементуемые стали марок 18ХГТ, 12ХН3А, 12Х2Н4А .
Шарики изготовляют из хромистой стали марки ШХ20СГ .
Материалы винта, гайки и тел качения должны обеспечить твердость рабочих поверхностей не ниже 61 HRC э.
Полость гайки при сборке заполняют пластичным смазочным материалом марки ЦИАТИМ-201 или ЦИАТИМ-203 .
Передачи требуют хорошей защиты от загрязнений. Наиболее часто применяют гармоникообразные меха, телескопические кожухи и съемники загрязнений - пластмассовые уплотняющие гайки с двумя-тремя выпуклыми витками по профилю канавок. Съемники загрязнений крепят к каждому торцу основной гайки.

Номенклатура показателей качества, используемых при оценке уровня качества ШВП, применяемых в металло- и деревообрабатывающих станках, участках, линиях, комплексах, промышленных роботах и кузнечно-прессовом оборудовании, установлена ОСТ 2 РЗ1-6-87 .

Похожие документы:

ГОСТ 3722-81 - Подшипники качения. Шарики. Технические условия;
расчет ходовых винтов;
расчет грузовых винтов;
пример выполнения чертежа ходового винта

Для передачи усилия и движения могут применяться самые различные шарико-винтовые передачи . Наибольшее распространение получила шарико-винтовая передача. Она обеспечивает линейное передвижение привода, которое преобразует вращение в поступательное движение. Среди особенностей этого процесса можно отметить крайне малое трение, так как оно приводит к износу материала и существенному снижению КПД, нагреву трущихся элементов. Рассмотрим особенности этого процесса подробнее.

Функциональное предназначение и устройство

Как ранее было отмечено, шарико-винтовая пара применяется для передачи усилия и преобразования вращения в поступательное движение. Устройство характеризуется наличием нескольких элементов:

  1. Стержень с винтовыми канавками.
  2. Гайка с подходящей резьбой и размером.

Наибольшее распространение получили варианты исполнения, характеризующиеся резьбой с полукруглым профилем. Шариковые винтовые пары довольно просты в исполнении, что определяет их надежность и длительный срок эксплуатации.

Принцип работы

Винтовая пара характеризуется довольно простой конструкцией, которая работает следующим образом

  1. На момент вращения гайки шарики перекатываются по созданным каналам.
  2. Шарики способны поступательно перемещать гайку, выталкивая из резьбы. При этом есть перепускной канал, за счет которого происходит возращение шариков в исходное положение.
  3. Перемещение шарика происходит по замкнутому контуру, который находится внутри гайки.
  4. Наибольшее распространение получили варианты исполнения шарико винтовые передач, в которых канал возврата соединяется два соседних витка.

Встречаются самые различные варианты исполнения рассматриваемой конструкции. Они выбираются в зависимости от условий эксплуатации и предназначения. Примером можно назвать то, что в станкостроительстве используется шариковая винтовая передача с трехконтурной гайкой. Для этого создается специальный вкладыш, для которого создается окно овальной формы. Для снижения трения и повышения показателя КПД применяются сразу три вкладыша, размещаемые под углом 120 градусов относительно друг друга.

Быстроходные или скоростные ШВП

Современные станки и иное оборудование характеризуется высокой производительностью и универсальностью в применении. Как правило, усилие создается двигателем, который совершает вращательное движение. Для того чтобы преобразовать вращение в возвратно поступательное движение применяется винтовая передача. Обычное сочетание винта и гайки характеризуется менее высоким КПД, чем новые скоростные конструкции.

Быстроходная шариковая винтовая передача характеризуется следующими особенностями:

  1. При изготовлении применяется материал, который характеризуется высокой износостойкостью. Слишком сильный износ приводит к потери точности.
  2. Специальная шарико винтовая передача обеспечивает быстрое перемещение гайки.

Чаще всего скоростные ШВП устанавливаются на станки с ЧПУ. За счет их применения обеспечивается быстрое перемещение исполнительных органов.

Классификация

При изготовлении шарико винтовой передачи могут применяться самые различные технологии. В зависимости от их особенностей выделяют следующие виды конструкций:

    1. Катанные получаются при применении метода холодной катки. Как правило, подобная технология характеризуется меньшими затратами при ее применении. За счет этого соотношение цены и качества максимально высокое, то точность получаемых изделий низкая.
    2. Шлифованные – прецизионные изделия, которые после нарезания резьбы и закалки подвергаются шлифованию. За счет этого обеспечивается высокая степень гладкости. Большинство изделий из этой группы характеризуется повышенной точностью. Однако, процесс закалки и шлифования определяет существенное повышение стоимости изделия.
    Провести классификацию также можно по конструктивным особенностям:
  1. При изготовлении стандартной шарико винтовой пары применяются стандарты DIN .
  2. Прецизионные получают путем применения технологии шлифования. Конструкция может состоять из одной или двух гаек, которые предварительно натягивают.
  3. Есть варианты исполнения, полученные шлифованием, с сепаратором. Подобная конструкция характеризуется наличием конструкции, за счет которой обеспечивается возврат шариков в начальное положение.
  4. Шарико винтовая передача с вращающейся гайкой имеет встроенный подшипник, который обеспечивает точное перемещение подвижного элемента.
  5. В рассматриваемую категорию также включается шлицевой вал с втулками шарикового типа. Подобная шарико винтовая конструкция характеризуется компактностью и простотой монтажа.
  6. Вариант исполнения консольного типа. Применяется в случае, когда требуется компактная передача.

Подобная классификация учитывается при выборе требуемой конструкции.

При выборе шарико-винтовой передачи учитываются ее основные характеристики. Как правило, они следующие:

  1. Протяженность стержня. Характеристики ШВП для оборудования с ЧПУ характеризуются максимальной длиной около 2-х метров. Это связано с тем, что слишком длинное изделие может деформироваться при точечном воздействии.
  2. Линейное скоростное передвижение – основной показатель, который стоит учитывать.
  3. Диаметр и шаг винта также можно назвать важными показателями. Именно они определяют то, какая нагрузка может оказываться.
  4. Точность изделия, которая варьирует в пределе от С1 до С10.

Можно встретить также табличную информацию, которая применяется для определения основных характеристик.

Установка передачи

Выбор ШВП можно провести в процессе разбора конструкции и эскизного проектирования. Перед установкой винтореечной шариковой передачи проводится расчет:

  1. Величины хода стола.
  2. Необходимое усилие, которое должно быть на винте.
  3. Выбирается наиболее подходящая длина винта.
  4. Точность определяет, нужно ли проводить установку шарико винтовой передачи, полученного путем шлифования или холодного проката.
  5. Определяются конструктивные особенности гайки: возврат шариков в исходное положение, нужен ли подшипник, какой должна быть гайка. Примером можно назвать то, что конструкция с одинарной гайкой обходится намного дешевле, но вариант исполнения с двойной более износостойкий.
  6. Уточняется, должен ли надежно фиксироваться свободный конец.
  7. Определяется то, как шарико винтовая передача соединяется с корпусом.

После выбора подходящего варианта исполнения шарико-винтовой передачи проводится ее установка. Крепление может проводится при применении винтов и заклепок или путем сварки.

Область применения

Основные характеристики определяют широкое распространение ШВП. Примером можно различные узлы автомобилей и станки. Более наглядным применением ШВП можно назвать нижеприведенные случаи:

  1. Изготовление привода станков ЧПУ. Современные варианты исполнения обладают несколькими линейными приводами. Примером можно назвать случай, когда станок Tornos имеет 14 управляемых осей.
  2. КАМАЗ и некоторые другие автопроизводители применяют подобную рейку при изготовлении рулевого механизма. За счет этого упрощается процесс изменения положения тяжелых колес, которые отягощены грязью.
  3. При производстве принтера и другого типографического оборудования устанавливается подобная рейка.

Как ранее было отмечено, в качестве основного источника усилия устанавливается двигатель. Вращение преобразуется рейкой в возвратно-поступательное движение, которое весьма распространено.

Преимущества ШВП перед остальными видами передач

Преимуществ у ШВП довольно много. Подобная конструкция характеризуется следующими достоинствами:

  1. Низкий коэффициент трения, который достигается за счет применения шариков.
  2. Более высокое значение КПД. Если сравнивать другие аналоги, которые могут передавать поступательное движение, то они существенно уступают. У многих вариантов исполнения ШВП имеет показатель КПД на уровне 90%.
  3. Скольжение отсутствует по причине применения канавок с шариками. За счет этого также существенно повышается длительность эксплуатации.
  4. Простота обслуживания и ремонта. При необходимости можно быстро добавить масло в зону хода винта. Смазывающее вещество равномерно распределяется по поверхности, за счет чего повышается эксплуатационный срок.
  5. Высокая скорость перемещения, которую можно достигнуть за счет использования специальных вариантов исполнения ШВП.
  6. Сниженное требование к приводу по показателю мощности. Это связано с низким сопротивлением хода винта.

Однако есть и несколько существенных недостатков, которые должны учитываться при выборе привода. Примером можно назвать высокую вероятность обратного хода при установке винта под большим углом или вертикально. Этот недостаток связан с тем, что трение минимальное.

Рассматриваемую шарико-винтовую передачу не рекомендуется использовать при создании ручных подач. Кроме этого, негативным фактором можно назвать высокую стоимость изделия, так как оно состоит из нескольких точных элементов. Для обеспечения низкой степени износа поверхность подвергается закалке, за счет чего стоимость изделия также повышается.

Обзор на специфический товар: комплекта ШВП типа SFU1605-1000 в качестве элементов передач ЧПУ станка.
В обзоре будет краткая информация о том, что такое ШВП и как ее применять


Собственно говоря, при попытке рассчитать и построить любительский ЧПУ станок (фрезер) своими силами столкнулся с тем, что у нас либо дорогие комплектующие для станков, либо не совсем то, что нужно. А конкретно, была проблема с приобретением ходового винта или ШВП в качестве элементов передачи по осям станка.

Существуют следующие типы передач для ЧПУ:

  1. ременные применяются вместе с шестернями в основном для лазеров, так как у лазера легкая «головка»
  2. зубчатые . Это прямозубые или косозубые зубчатые рейки и шестерни для перемещения по ним
  3. ходовые винты бывают типа Т8 (в основном используются в 3Д принтерах и других малогабаритных станках), типа TRR, например TRR12-3 с POM-гайкой (пластиковой).
  4. шарико-винтовые передачи - это винт и гайка к нему. В гайке есть специальные подшипники, которые перемещаются по каналу внутри гайки.

Как правило, выбирают с учетом нагруженности (масса передвигаемого портала/оси) и влиянию люфта. В ШВП люфт меньше за счет подшипников, они считаются точнее и предпочтительнее, но при этом достаточно дороги для самоделок.

Цитата с

Винтовая передача - механическая передача, преобразующая вращательное движение в поступательное, или наоборот. В общем случае она состоит из винта и гайки....
один из основных типов: шариковинтовая передача качения (ШВП).

Шарико-винтовая передача (далее ШВП) - это более надежный аналог ходового винта, но вместо латунной гайки (или пластиковой как для винтов типа TRR-12-3, как у меня на старом проекте) предназначена специальная гайка с шариками, которые входят в зацепление с винтом ШВП, выбирают весь люфт и одновременно снижают трение. Для самостоятельной сборки станка ЧПУ или 3Д принтера на ШВП потребуется винт ШВП, гайка к нему, муфта крепления к двигателю и подвесные подшипники.


Вот небольшой рендер из интернета. Хорошо видно, как шарики распределены по винту. Аналогично Т8, винт ШВП имеет резьбу в несколько заходов.

Для станка ЧПУ нужно было для оси Y два комплекта ШВП на 1000 мм, и для X оси: 600 мм.
ШВП получил курьерской почтой. Это не дорогой вариант, учитывая вес посылки (около 8 кг).


Упаковка представляет собой длинную узкую коробку, внутри картонной упаковки есть упаковка типа синтетического мешка, очень прочный материал. Аккуратно распаковываем. Внутри всем знакомая bubble-wrap, то есть пупырчатая пленка, которая защищает товар от механических воздействий.


Убираем пленку. В посылке было три комплекта ШВП: винт+гайка, разного размера. Два комплекта предназначены для перемещения портала станка по оси Y, третий короткий комплект для оси X.


Все комплекты завернуты в ингибиторную зеленую пленку, которая препятствует попаданию влаги. Плюс присутствует изрядное количество смазки на поверхности товара.


В этом комплекте я доплачивал за оконцовку одного комплекта на 600 мм (так вышло дешевле). Оконцовку (machined) заказывал отдельно у этого же продавца (у него есть такая услуга в каталоге), стоило по 1 баксу за каждый конец винта. Хороший вариант для тех, кто берет винты в конкретный размер.


Вот что представляет собой «оконцовка». Это обтачивание винта 16.05 мм до диаметра 12 мм для установки в подвесной подшипник, далее резьбовая часть для фиксации винта, затем обтачивание до 10мм для зажимания конца в эластичную муфту двигателя


Посылка дошла в целости и сохранности, курьерская доставка это не почта России. Прикладывал линейку в разных местах, чтобы найти искривление. Не нашел, ШВП ровные. Остальное покажет установка и использование.


Фото резьбовой части винтов


Внешний вид комплектов


И еще. Гайки пришли уже накрученные на винт… Шарики засыпаны внутри, есть смазка. Просите при заказе запасные шарики, хотя бы несколько.


Далее начинаем проверять размеры винтов. Короткий на 600 мм. То есть в эти 600 входит резьбовая часть с обоих сторон. Реальный ход по осям станка получится меньше.
Обратите внимание , что в лоте размер указан для винта ШВП вместе с резьбой и обточенными концами, то есть рабочий ход по ШВП будет меньше, чем ее длина! А конкретно на 65 мм меньше.


Второй и третий винты ШВП на 1000 мм


Диаметры резьбовой части соответственно 1605


посадочные места под подшипники 10 и 12 мм соответственно.


И с другой стороны под подшипник. Диаметр самой гайки SFU1605 равен 28 мм.


Если снять с гайки пластиковую заглушку, то можно обслужить ШВП, смазать или поменять шарики. Проверяю, что все в наличии))))


Собственно говоря, можно снять гайку, протереть ее, заново смазать ее, загрузить шарики обратно. Пластиковая крышка крепится потайным винтом под шестигранник 2.5 (его видно вверху).

Для установки ШВП в станок потребуются подвесные подшипники типа BK12+BF12 (прямые) или FK12+FF12 (фланцевые), эластичная муфта 6.35*10mm для подключения к двигателю типа NEMA23 с одной стороны (6.35мм) и к концу ШВП с другой (10 мм).

Внешний вид комплекта оси в сборе: подшипники BK12, BF12, стопорное кольцо, гайка для фиксации винта, держатель гайки SFU1605, муфта для двигателя и сам винт с гайкой.


Размеры ШВП для тех, кто собирается приобрести или проектирует механику станка


И отдельно для SFU1605


Внешний вид гайки SFU1605

Внешний вид подшипников (слева) и подшипников с фланцем (справа). Отличаются способом установки на раму.


Гайка ШВП крепится через специальный корпус-переходник. , алюминиевый

Для монтажа на одну ось (у меня по две на ось для Y стоит) потребуется:

  • 1 x винт SFU1605-1000mm;
  • 1 x подшипник BK12;
  • 1 х подшипник BF12;
  • 1 x муфта двигателя 6.35x10mm
  • 1 x стопорное кольцо
  • 1 x гайка.
В сборе это выглядит следующим образом:


Через отверстия на подшипнике крепим на профиль/раму станка. Для подшипников FK12/FF12 все аналогично, только крепить из надо фланцем к отверстию под ШВП. Смысл не меняется.

Теперь немного видео, поясняющего принцип работы ШВП. Обратите внимание на перемещение шариков (по встроенному каналу внутри гайки).


А вот так происходит накатка резьбы на винты ШВП


Обработка концов винта ШВП (то, что я называл «machined»). У нас за такую операцию просят 600....1000р, в Китае $1.

Следующие фотографии дают общее представление о использовании ШВП в конструкции станка ЧПУ.


Вот фото самодельного станка, в котором ШВП зафиксированна неподвижно, а вращается гайка с помощью ременного привода и шестерни

В итоге, ШВП является более дорогим и надежным вариантом передач для станков, подходит для перемещения тяжелых порталов с высокой точностью. В зависимости от веса и конструкции станка можно применять SFU1205, SFU1605/1610, SFU2005/ 2010 или еще более массивную SFU2505/2510.
Обзор понравился +107 +213

Лекция 21 ПЕРЕДАЧИ ВИНТ-ГАЙКА КАЧЕНИЯ

План лекции

1. Общие сведения.

2. Устройство и принцип работы шариковинтовых передач.

3. ШВП с предварительным натягом.

4. Расчет шариковинтовой передачи.

1. Общие сведения

Передача винт–гайка качения – винтовая пара с промежуточными телами качения: шариками или роликами. Наиболее широко применяют шариковые винтовые передачи (ШВП).

В шариковых винтовых передачах на винте и в гайке выполнены винтовые канавки (резьба) криволинейного профиля, служащие дорожками качения для шариков, размещенных между витками винта и гайки.

Достоинства шариковинтовой передачи: малые потери на трение, высокая несущая способность при малых габаритах, возможность реализации равномерного поступательного перемещения с высокой точностью, высокое быстродействие, значительный ресурс. ШВП могут быть легко приспособлены для работы с электрическими, гидравлическими и другими приводами.

К недостаткам можно отнести сложность конструкции гайки, необходимость высокой точности изготовления и хорошей защиты передачи от загрязнений.

Применение. Шариковинтовые передачи применяют в исполнительных механизмах, в следящих системах и в ответственных силовых передачах (станкостроение, робототехника, авиационная и космическая техника, атомная энергетика и др.). Перспективным считается создание и использование мехатронных узлов перемещения, включающих в свою структуру помимо передачи винт-гайка качения также приводной электродвигатель и элементы управления.

Резьбы , применяемые в ШВП, изготовляют с криволинейным профи-

лем: полукруглым (рис. 21.1, а ) и «стрельчатая арка » (рис. 21. 1, б ). Наи-

большее распространение получила резьба с полукруглым профилем, позволяющая создавать конструкции ШВП с регулируемым натягом.

d а)

D w R

2. Устройство и принцип работы шариковинтовых передач

При вращении винта шарики вовлекаются в движение по винтовым канавкам, поступательно перемещают гайку и, выкатываясь из резьбы, че-

рез перепускной канал (канал возврата) возвращаются в исходное положе-

ние. Таким образом, перемещение шариков происходит по замкнутой внутри гайки траектории. Наиболее распространена конструкция ШВП, в которой

канал возврата соединяет два соседних витка (рис. 21.2). Число i в ра-

бочих витков в гайке от 1 до 6.

В станкостроении применяют трехвитковые гайки (i в = 3). Перепускной канал выполняют в специальном вкладыше 1 (рис. 21.2), который вставляют в овальное окно гайки. В трехвитковой гайке предусматривают три вкладыша, расположенные под углом 120° один к другому и смещенные по длине гайки на один шаг резьбы по отношению друг к другу. Таким образом, шарики в гайке разделены на три (по числу рабочих витков) независимых группы. При работе передачи шарики, пройдя по винтовой канавке на винте путь равный длине одного витка, выкатываются из резьбы в перепускной канал вкладыша, переваливают через выступ резьбы и возвращаются обратно в исходное положение на тот же виток гайки. Конструктивно ШВП с вкладышами имеют минимальные радиальные размеры, в них отсутствуют детали

типа отражателей, а канал возврата имеет минимальную длину, что облегчает проталкивание шариков. Однако такая конструкция неприменима для передач с многозаходной резьбой.

Гайки с большим числом i в витков применяют в тяжелонагруженных передачах крупных станков.

Основные характеристики ШВП. Стандартизованы шарико-

винтовые передачи, применяемые для комплектации металло- и деревообрабатывающих станков, промышленных роботов, кузнечно– прессового оборудования.

Грузоподъемность. В каталоге приведены значения базовых I статической осевой С оа и динамической осевой С а грузоподъемностей шариковинтовых передач с трехвитковыми гайками.

Базовая статическая грузоподъемность Соа – статическая центральная осевая нагрузка в Н, которая соответствует расчетному контактному напряжению в зоне контакта шарика и дорожки качения, равному 3 000 МПа. Возникающая при этих контактных напряжениях общая остаточная деформация тела качения и дорожки качения приблизительно равна 0,0001 диаметра тела качения.

Базовая динамическая осевая грузоподъемность Са – постоянная цен-

тральная осевая нагрузка в Н, которую шариковинтовая передача теоретически может воспринимать при базовом расчетном ресурсе, составляющем один миллион оборотов винта и соответствующем 90%-ной надежности передачи.

В общем случае необходимая точность изготовления элементов пере-

дачи – винта, гайки, шариков – обусловлена требуемыми с точностью перемещения ведомого звена, плавностью движения, постоянством натяга, постоянством движущего момента и др.

Кинематическую точность ШВП характеризуют кинематической погрешностью винтовой пары – разностью между действительным и номинальным осевыми перемещениями одной из сопряженных деталей винтовой пары в их относительном движении. В соответствии с допускаемыми значениями кинематической погрешности установлены 10 классов точности ШВП.

Радиальный зазор между винтом и гайкой до создания предварительного натяга регламентирован для стандартизованных ШВП с полукруглым профилем. Радиальный зазор измеряют при смещении в радиальном направлении собранной гайки под действием силы, превышающей силу тяжести гайки в 1,5 – 2 раза.

Осевая жесткость – отношение осевой силы, приложенной к гаечной группе, к осевому перемещению ее корпуса относительно винта при условии, что винт не проворачивается.

Момент холостого хода замеряют в контролируемой передаче, установленной в центрах стенда, при вращении винта с частотой 100 мин -1 .

Числовые значения основных характеристик регламентированы отраслевыми стандартами.

Материалы винта, гайки и тел качения должны обеспечить твердость рабочих поверхностей не ниже 61HRC. Винты изготовляют из сталей: марки ХВГ с объемной закалкой, марки 8ХВ с закалкой при индукционном нагреве, марки 20ХЗМВФ с азотированием. Для гаек применяют стали марок ШХ15, ХВГ с объемной закалкой и цементуемые стали марок 18ХГТ, 12ХНЗА. Шарики изготовляют из хромистых сталей марок ШХ15, ШХ20СГ.

Полость гайки при сборке заполняют пластичным смазочным материалом марок ЦИАТИМ–01 или ЦИАТИМ–203.

ШВП в зависимости от условий работы и предъявляемых к ним требо-

ваний подразделяют на передачи с зазором и передачи с натягом. Во первых осевой зазор всегда выбирается в одну сторону вследствие действия осевой силы: силы тяжести груза, силы сопротивления перемещаемого узла и т. п. Во вторых зазор устраняют при сборке предварительным нагружением элементов передачи осевой силой, обеспечивающей необходимую осевую жесткость.

3. ШВП с предварительным натягом

С целью устранения осевого зазора в сопряжении винт–гайка и повышения тем самым осевой жесткости и точности перемещения I Ц1ВП собирают с предварительным натягом. Созданием предварительного натяга не только устраняют зазоры, но и усредняют периодические ошибки шага винта, стабилизируют положение оси гайки относительно оси винта. Конструктивно натяг осуществляют: для профиля «стрельчатая арка» – подбором шариков несколько большего диаметра; для полукруглого профиля – установкой двух гаек, размещенных в одном корпусе, с последующим относительным их осевым смещением. Конструкция с двумя гайками обеспечивает возможность регулирования натяга. Относительное смещение гаек осуществляют установкой прокладок между ними или их относительным угловым поворотом.

Рассмотрим пример конструкции ШВП с регулированием натяга относительным поворотом гаек (рис. 21.3). Соединение гаек с корпусом выполнено зубчатыми муфтами 7 и 2, у которых наружные зубья нарезаны на флан-

цах гаек, а внутренние – в корпусе. Числа зубьев z 1 и z 2 муфт отличаются на единицу, что позволяет поворачивать гайки одну относительно другой на малый угол, осуществляя осевое смещение на очень малую величину.

Поворот гаек выполняют вне винта на специальной оправке – трубе с

наружным диаметром, равным внутреннему диаметру d 3 резьбы винта по впадинам, после чего гайки вместе с корпусом навинчивают на винт.

Если число зубьев на фланце одной из гаек z 1, а на фланце другой (z 1 +1), то поворот обеих гаек в одну сторону на k зубьев приводит при шаге Р к их осевому смещению Рk /.

Например, при z 1 = 92, Р =10 мм и k =1 имеем ∆ =1,2 мкм.

Основные геометрические соотношения

Основные геометрические параметры шариковинтовой передачи

(рис. 21.1, 21.4): d 0 – номинальный диаметр резьбы; Р – шаг резьбы α – угол контакта (α = 45°); z - число заходов резьбы (обычно z = 1).

Основные параметры полу, круглого профиля резьбы (размеры в

Диаметр шарика: D w 0,6P

Внутренний диаметр резьбы винта:

d 3 d 0 1,012D w

Наружный диаметр резьбы винта:

d = d0 - 0,35Dw ;

Радиус шарика:

R w = D w / 2;

Радиус профиля резьбы:

R np = (1, 03 – 1, 05)R w ;

Смещение центра радиуса профиля:

С = (R np – R w )sin α ;

Диаметр качения по профилю винта:

d кв

D w cosα ;

Диаметр качения по профилю

d кг

D w cosα ;

Угол подъема резьбы на

ψ arctg Рz /(πd кв )

диаметре d к в , °:

R пр

R пр

45о

кв 0

Ось винта

Число рабочих шариков в одном витке с каналом возврата во вкладыше

z раб z ш z в ,

где z в – число шариков в канале возврата, z в = 3PID w .

Расчетное число шариков в одном витке гайки с учетом неодинакового их нагружения вследствие погрешностей изготовления элементов передачи и неравномерности распределения нагрузки между витками

z p = 0,7z pa6 = 0,7(z ш - 3Р/D w )

Коэффициент трения качения

Трением качения называют сопротивление, возникающее при перека-

тывании одного тела по другому. Комплекс явлений, вызывающих трение качения, достаточно сложен. В технических расчетах применяют в основном данные экспериментальных исследований. Опыты показывают, что сопротивление перекатыванию зависит от упругих свойств материалов, шероховатостей и кривизны соприкасающихся поверхностей, значения прижимающей силы. На преодоление сопротивлений при перекатывании тел затрачивается работа, обусловливаемая в основном деформированием сопряженных поверхностей.

При перекатывании, например цилиндра по плоскости, можно выделить два участка площадки контакта (рис. 21.5). Участок С 2 находится в зоне нарастающих деформаций (в зоне нагрузки), участок С 1 – в зоне исчезающих деформаций (в зоне разгрузки). Наличие внутреннего трения в материале приводит к необратимым потерям энергии – упругому гистерезису. Это явление называют несовершенной упругостью , поэтому распределение напряжений по всей площадке контакта несимметрично максимуму и смещено в сторону Движения на величину f k (рис. 21.6), которую называют плечом силы трения качения или коэффициентом трения качения и измеряют в миллиметрах. Таким образом, при качении необходимо преодолеть некоторый момент – момент трения качения.

F тр

F тр

Шариковинтовые передачи работают в условиях трения качения, реализуемого при взаимодействии резьб винта и гайки через тела качения – шарики. Рассмотрим качение шарика, находящегося между двумя плоскостями и нагруженного силами F n (рис. 21.7).

Движение одной из плоскостей со скоростью v вызывает качение шарика: перемещение центра шарика со скоростью v /2 и вращения относительно центра с угловой скоростью ω = v/ (2R w ). Для качения нагруженного шарика по сопряженным плоскостям необходимо преодолеть момент сопротивления качению, обусловленный силами трения F w в контакте. По общему

определению сила трения есть произведем нормальной к поверхности силы F n на коэффициент трения f или на тангенс угла трения р : F тр F n f F n tgρ .

Из условия равновесия шарика под воздействием внешних моментов следует:

2 Frp Rw =2 Fn fк .

Отсюда (см. также рис. 21.6)

f к R w F тр / F n R w tgρ

F тр

F тр

Момент сопротивления качению шарика в рассматриваемых условиях

Т ш 2 F тр R w 2 F n f к 2 F n R w tgρ F n D w tgρ .

Для шариковинтовой передачи с числом i в витков и расчетным числом z p шариков в каждом витке момент сопротивления вращению может быть вычислен по зависимости

Т iв zр Fn Dw tgρ ,

где ρ arctg(f к / R w ) обычно принимают f к = 0,010– 0,012 мм.

Силу F n , действующую по нормали к площадке контакта, определяют расчетом, а угол трения ρ принимают по приведенным выше (рекомендациям или по результатам специально выполненного эксперимента.

Момент сопротивления вращению является основной величиной. характеризующей потери на трение в шариковинтовой передаче.

Силовое взаимодействие в ШВП и расчет потерь на трение

Передача с зазором. Рассмотрим случай нагружения винта вращающим моментом Т и осевой силой F a сопротивления перемещению гайки (рис. 21.8). Силовое взаимодействие между шариком и винтом происходит в т. K

на винтовой линии, обозначенной штрихами. На основном виде (т.е. в плоскости, параллельной оси винта, рис. 21.8, а ) показаны вектор силы трения F ТР , направленный по касательной к окружности качения диаметром d кв , и проекция F n sinα вектора нормальной к площадке контакта силы F n , перпендикулярная винтовой линии. Вектор силы F n показан в плоскости А-А , перпендикулярной винтовой линии рис. 21.8, б.

При этом плоскость качения совпадает с плоскостью Б-Б.

Силовое взаимодействие в точке контакта K удобно представить в виде параллелепипеда, построенного на векторах сил (рис. 21.9).

F тр

Исходными для рассмотрения являются нормальная сила F

Ось винта

Полная реакция R n (KC ) точке контакта равна геометрической сумме векторов сил F n (KD) и F тр (KB ). Вектор силы R n также расположен в плоскости качения KBCD.

В плоскости KBEF, параллельной оси винта, отклонения вектора результирующей силы R (KE ) от плоскости KFDC перпендикулярной винтовой линии, составляет угол ρ

KÂ / ÊF F òð /(F n sinα)

tgρ

Выразив силу трения F тр из (21.3) и подставив в (21.4), получим tg ρ F n tgρgρ/n sinα) tg ρ / sin α

Обычно величину ρ называют приведенным углом трения

ρ = arctg(tg ρ /sina).

Тогда для результирующей R (KE ) сил взаимодействия в плоскости KBEF, параллельной оси винта, можно записать

R = F n sinα / cosρ .

С другой стороны, результирующая сила R(KE) (рис. 21.8, 21.9) может

быть представлена в виде проекций F o и F t соответственно в правлении оси винта и в перпендикулярном оси винта направлении (рис. 21.10)

F 0 R cos(ψ ρ) F n sin cos(ψ ρ)/cosρ , F t R sin(ψ ρ) F n sin sin(ψ ρ)/cosρ .

Сумма сил F 0 на всех шариках должна уравновесить внешнюю осевую силу F a , а сумма произведений сил F t , на плечо d кв /2 – вращающий момент Т

F a i в z р F n sinα cos(ψ ρ1 ) / cosρ ,

T i в z р F 1 d кв / 2 i в z р F n sinαsin(ψ ρ1 )d кв /(2cosρ) .

С появлением промышленного производства винтовые передачи стали широко применяться в технике, в частности для перемещения суппортов металлорежущих станков. Развитием винтовых механизмов стали шарико-винтовые передачи (ШВП). Их появление обусловлено созданием нового поколения металлорежущего оборудования - станков с числовым программным управлением (ЧПУ).

Функциональное предназначение и устройство

Вид профиля впадины винт-гайка: а) арочный контур б) радиусный контур

Цель рассматриваемого механизма состоит в том, чтобы преобразовать вращательное движение привода в прямолинейное перемещение рабочего объекта. Передача состоит из двух составных частей: ходового винта и гайки.

Винт изготавливается из высокопрочных сталей марок 8ХФ, 8ХФВД, ХВГ, подвергнутых индукционной закалке, или 20Х3МВФ с азотированием. Резьба выполнена в форме спиральной канавки полукруглого или треугольного сечения. В зависимости от условий работы винта профиль впадины может иметь несколько исполнений. Наиболее часто применяется арочный или радиусный контур.

Охватывающая деталь - гайка является составным узлом. Она имеет сложное устройство. Обычно представляет собой корпус, в котором расположены два вкладыша с такими же канавками, как и у ходового винта. Материал вкладных деталей: объемно закаливаемая сталь марки ХВГ, цементируемые стали 12ХН3А, 12Х2Н4А, 18ХГТ. Вставки устанавливают таким образом, чтобы после сборки обеспечить предварительный натяг в системе винт-гайка.

Внутри винтовых канавок размещаются закаленные стальные шарики, изготовленные из стали ШХ15, которые при работе передачи циркулируют по замкнутой траектории. Для этого внутри корпуса гайки имеются несколько обводных каналов, выполненных в виде трубок, соединяющих витки гайки. Длина их может быть различной, то есть шарики могут возвращаться через один, два витка, или в конце гайки. Наиболее распространенным является возврат на смежный виток (система DIN).

Принцип работы

Винт приводится во вращение от приводного электродвигателя, гайка закреплена неподвижно на рабочем органе станка (суппорт, каретка, шпиндельная бабка, люнет и так далее). При этом возникает осевая сила, действующая на шарики, размещенные внутри гайки, под действием которой они начинают катиться в замкнутых винтовых канавках. Сила реакции воздействует на гайку, а поскольку та жестко соединена с перемещаемой деталью, заставляет последнюю перемещаться по направляющим станка. В чем состоит отличие работы ШВП от обычной винтовой передачи с трапециевидной резьбой, которая ранее применялась на станках?

    1. При вращении ходового винта прежней конструкции в зоне контакта двух деталей возникало трение скольжения, характеризующееся коэффициентом трения (бронза по стали, со смазкой) f = 0,07–0,1. В механизме с шариковыми элементами действует трение качения с коэффициентом f = 0,0015–0,006. Как видно из приведенных значений, винтовые шариковые передачи требует значительно меньшей мощности приводного двигателя.
    2. Для точного позиционирования каретки или суппорта станка перед остановкой рабочего органа необходимо замедлять скорость его перемещения. По достижении определенного порога минимальной скорости возможны микроостановки - залипания - движущегося узла. В момент возобновления движения его характер определяется трением покоя, которое при скольжении значительно превышает трение движения. Из-за этого возникают рывки, ухудшающие точность позиционирования. При трении качения этот недостаток практически сводится к нулю.

Быстроходные или скоростные ШВП

Быстроходный ШВП

Увеличение скорости перемещения гайки относительно винта достигается за счет увеличения шага между канавками, по сравнению со стандартным винтом в 3-5 раз, у обычной ШВП передачи диаметра 16-32мм шаг составляет 5-10мм, у скоростной тех же диаметров — 16-32мм и кратна диаметру винта.

За счет увеличения скорости перемещения — потери в жесткости и максимальной нагрузки на передачу (большей степени) и точности (в меньшей степени).

Классификация

По технологии изготовления ходовые винты бывают:

  • Катаные - с винтовой канавкой, получаемой методом холодной прокатки. Эти винты производятся с меньшими затратами, поэтому обладают лучшим соотношением цена-качество при средней точности изготовления (C5, C7, C9).
  • Шлифованные - относятся к прецизионным изделиям. После нарезания резьбы и последующей термообработки подвергаются шлифованию. Имеют повышенную точность (C1, C3, C5) и более высокую цену.

По конструкции:

  • Шарико-винтовые - изготовленные согласно стандарту DIN. Шарики возвращаются в смежную канавку по желобу отражателя, встроенного в гайку.
  • Прецизионные - изготавливаются шлифованием. Могут состоять из одной или двух гаек, иметь предварительный натяг (преднатяг) - устранение осевого зазора с целью повышения точности при реверсах и увеличения жесткости привода.
  • Прецизионные с сепаратором - отличаются конструкцией возврата шариков (отсутствует соударение) и шлифованным профилем канавки.
  • Прецизионные с вращающейся гайкой имеют встроенный подшипник, благодаря чему имеют повышенную точность перемещения.
  • Шлицевый вал с шариковыми втулками фланцевого исполнения. При этом вал выполняет функцию внутреннего кольца подшипника. Эта конструкция отличается компактностью и простотой монтажа.
  • Консольное исполнение винта . Применяется для коротких ходовых винтов, не имеющих второй поддержки.

Технические характеристики ШВП

    Основные параметры:
  • Диаметр и шаг винта - от 16 × 2,5 до 125 × 20 мм.
  • Длина винтового стержня. Ходовые винты для станков с ЧПУ обычно выпускаются с максимальной длиной 2,0–2,5 м, хотя под заказ изготавливают и до 8 метров.
  • Линейная скорость перемещения - до 110 м/мин.
  • Точность передачи - C1…C10.

Силовые характеристики для некоторых типоразмеров приведены в таблице:

Силовые параметры шарико-винтовых передач
Диаметр × шаг, мм Грузоподъемность, Н Осевая жесткость, Н/мкм
Статическая Динамическая Корпусных ШВП Бескорпусных ШВП
16 × 2,5 9600 5000 230
32 × 5 37500 17710 700 760
50 × 10 112500 57750 1000 1100
80 × 10 197700 66880 1700 1900
125 × 20 729000 278000 2850
Примечание: осевая жесткость указана для класса точности C1.

Установка передачи

Выбор ШВП для конкретного оборудования производится в процессе конструкторской разработки, а именно на стадии эскизного проектирования - после того как будут определены величина хода стола и необходимое усилие на винте. Затем уточняют техническое решение:

  • В зависимости от необходимой степени точности привода выбирают между обычной и прецизионной передачей.
  • Определяют конструктивный вариант гайки: одинарная, двойная, способ возврата шариков, наличие подшипника и другое. Одинарная гайка дешевле, но в случае износа требует замены, сдвоенную можно регулировать путем подшлифовки компенсатора. Система рециркуляции шариков с помощью трубок несколько увеличивает стоимость гайки, однако допускает возможность ремонта изношенных каналов путем замены обводных трубок.
  • Решают - требуется или нет поддержка свободного конца винта.
  • Уточняют характер соединения корпуса гайки с перемещаемым узлом, а также ведущего конца ходового винта с электромеханическим приводом. Производят динамический расчет, в случае необходимости вносят изменения в конструкцию.
  • Закончив сборку станка, производят испытания всех узлов, в том числе и шарико-винтовой передачи, согласно методике испытаний.

Область применения

ШВП получили широкое распространение во многих отраслях промышленности: станкостроение, робототехника, сборочные линии и транспортные устройства, комплексные автоматизированные системы, деревообработка, автомобилестроение, медицинское оборудование, атомная энергетика, космическая и авиационная промышленность, военная техника, точные измерительные приборы и многое другое. Несколько примеров использования этих узлов:

  • Приводы подач станков с ЧПУ. Первый серийно выпускаемый в СССР обрабатывающий центр ИР-500 имел 3 координаты обработки. Современные системы содержат значительно большее количество линейных приводов. Например, многошпиндельные автоматы продольного точения Tornos серии MULTI SWISS имеют 14 управляемых осей.
  • Перемещение поршня-рейки рулевого механизма автомобилей (МАЗ, КАМАЗ, Газель).
  • Вертикальное перемещение каретки производственного 3D-принтера VECTORUS серий iPro и sPro.

Производители:

  • Steinmeyer (Германия);
  • SKF (Швеция);
  • MecVel (Италия);
  • THK (Япония);
  • SBC (Корея);
  • HIWIN (Тайвань).