Для чего свет в холодильнике. Какой свет лучше: желтый или белый? Цветовая температура освещения

Цугунов Антон Валерьевич

Время на чтение: 6 минут

В современном мире зрение каждого человека испытывает повышенную нагрузку: мониторы компьютеров, экраны телевизоров и всевозможных гаджетов постоянно у нас перед глазами, на работе и дома. Поэтому многих людей, стремящихся компенсировать ущерб для зрения хотя бы там, где это возможно, волнует, какой свет лучше. Кроме того, цвет освещения влияет на восприятие интерьера комнаты, может его выгодно подчеркнуть или, напротив, неприятно исказить цвета. Из этого следует, что даже к такой мелочи, как выбор лампочки, нужно отнестись со вниманием.

Мнение эксперта

Цугунов Антон Валерьевич

Мастер-универсал, с 2003 года занимаюсь ремонтом и отделкой помещений, более 100 завершенных объектов. Ценю качество больше, чем количество!

Здравствуйте, друзья!

Сразу дам пояснение: цветовая температура освещения не имеет ничего общего с температурой воздуха в градусах Цельсия. Не влияет она и на нагрев лампы или светильника. Температура, которая измеряется в Кельвинах, относится только к характеристикам света, а вернее, к видимой части излучения.

Значения «теплый» и «холодный» свет так называют только из-за того, как мы их видим, и носят чисто психоэмоциональное значение.

Экспериментальным путем было доказано, что по ощущениям в комнате с лампами около 6 000 Кельвинов людям КАЖЕТСЯ, что температура в комнате на пару градусов ниже. Термометры показывали одинаковую температуру в градусах Цельсия.

Влияние цвета освещения на человека и зрение?

Волноваться по поводу взаимосвязи цвета осветительных приборов и здоровья глаз не стоит: он не влияет на зрение.

Однако определенное воздействие на человека оттенок освещения все-таки оказывает: в некоторой степени от него зависит наше психоэмоциональное состояние и настроение. Теплый свет способствует расслаблению, холодный – бодрит и держит в тонусе, поэтому каждый из них хорош на своем месте и в свое время. Давайте разбираться, какой искусственный свет лучше и полезнее для глаз – теплый или холодный белый?

Сколько ни пытаются компании, занимающиеся разработкой приборов искусственного освещения, создать лампочку, полностью соответствующую по всем параметрам естественному солнечному свету, на сегодняшний день эти попытки безрезультатны.

Цветовая температура источника

Чтобы узнать, каким будет свет от энергосберегающей или светодиодной лампы, нужно обратить внимание на значение цветовой температуры, указанное на упаковке. Единица измерения – Кельвин (К).


Чем ниже эта величина, тем более желтым будет свечение. Освещение от лампочки, имеющей высокую цветовую температуру, имеет голубоватый оттенок. Чаще всего встречаются три основных цвета освещения:

  1. Белый теплый – 2700–3500 К.
  2. Нейтральный или естественный белый – 3500–5000 К.
  3. Холодный белый – от 5000 К и выше.

Теплый свет

Освещение теплого белого цвета с привычным желтоватым оттенком комфортно и приятно для человеческих глаз, его свечение такое же, как у желтого солнечного света ранним утром или ближе к закату. Его могут обеспечить как обычные лампы накаливания, так и галогенные. Также можно найти в продаже люминесцентные и светодиодные устройства с излучением теплого спектра. Где лучше всего использовать такой свет?

  • В гостиной. Рекомендуется организовать тепловатое освещение в помещениях, где требуется создать непринужденную и уютную атмосферу. К примеру, в комнате, где семья собирается по вечерам, чтобы поужинать и пообщаться.

В гостиной лучше всего установить рассеивающую люстру.

  • В кухне. Теплое освещение прекрасно подойдет для зоны над обеденным столом: блюда будут выглядеть аппетитнее и красивее.
  • В ванной. Мягкий тепловатый свет в зоне для купания поможет расслабиться.
  • В спальне. Именно в этой комнате особенно важно создать ощущение спокойствия и комфорта, чтобы глаза могли отдохнуть.

Лампы с теплым спектром используются дизайнерами для увеличения цветовой насыщенности предметов интерьера мягких тонов. Холодные оттенки, наоборот, станут менее заметными.
Синий и зеленый цвета будут искажены: это происходит из-за того, что в свете от такой лампы отсутствуют лучи соответствующего спектра.

При подобном освещении прохладные тона меняются следующим образом:

  • голубой может казаться зеленоватым;
  • синий станет блеклым;
  • темно-синий превратится в черный;
  • фиолетовый можно будет перепутать с красным.

Именно поэтому нужно продумать все детали заранее, перед покупкой лампы, чтобы освещаемое помещение не приобрело нежелательный или даже неприятный вид.

Естественный белый свет

Галогенные, светодиодные и некоторые люминесцентные лампы дают освещение, максимально приближенное к естественному белому свету, поэтому цвета практически не искажаются . Целесообразно устанавливать их:

  • в детских комнатах, но только не дешевые люминесцентные лампы, они мерцают и могут вызывать головные боли ;
  • в прихожей;
  • в рабочей зоне кухни;
  • в месте, предназначенном для чтения, например возле кресла или в спальне над кроватью;
  • рядом с зеркалами, поскольку они верно передают оттенок кожи.

Необходимо помнить, что важно правильно расположить источник освещения относительно зеркал и отражающих поверхностей, чтобы не ослеплять смотрящего в них человека.

Холодный свет

Свет холодного цветового спектра напоминает белое зимнее солнце. Его часто используют в офисных помещениях, а также везде, где необходимо создать рабочее настроение. Именно нейтральные и прохладные оттенки подойдут для тех мест, где предполагается наличие одновременно естественного и искусственного освещения, так как эти тона помогут улучшить концентрацию.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Полотенцесушители в интерьере ванной (фото)

Холодный световой поток воспринимается человеческим глазом как более яркий и интенсивный.

В квартирах лампы с таким излучением чаще всего используют:

  • На кухне, где для приготовления еды требуется акцентное освещение.
  • В кабинете, поскольку такое излучение уравновешивает и повышает работоспособность.
  • В ванной, в зоне для умывания – холодное голубоватое освещение поможет взбодриться и до конца проснуться.

Цвета при таком освещении тоже искажаются, но изменения касаются только тепловатых оттенков. Красный, оранжевый и желтый цвета будут казаться фиолетовым, коричневым и зеленоватым соответственно. А вот синие и зеленые тона, напротив, будут выглядеть насыщенными и сочными.

Лампы какой цветовой температуры вы предпочитаете?

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Лето - это радость и благодать. Но когда градусник показывает немыслимые цифры в тени, становится липко, мокро и почти невыносимо. В адское пекло сложно находиться в стенах обычной квартиры, засыпать ночью. Особенно если нет кондиционера.

сайт нашел работающие трюки, которые помогут чувствовать себя дома комфортно, даже если температура за окном будет зашкаливать.

Лед перед вентилятором

Охлажденная простыня

Если дома очень жарко даже ночью и невозможно заснуть, то кладем простыню в морозилку на 10 минут и только после этого стелем ее. Не забываем предварительно положить простыню в пластиковый пакет. Это создаст во время засыпания ощущение прохлады, а не влаги.

Влажные шторы

Если открыть окно и от души побрызгать водой из пульверизатора висящие на нем шторы, то эффект более влажного и прохладного воздуха обеспечен. Правда, он будет длиться до получаса. Для стойкого эффекта обрызгивать ткань нужно довольно часто.

Закрытые окна и балкон

Для того чтобы отсечь горячий воздух с улицы и не допустить парникового эффекта, нужно всего лишь избавиться от привычки открывать окна и балконную дверь, когда жарко. Проветривать квартиру лучше всего до жары, в самые ранние часы, и после того, как она спадает, - поздней ночью.

Светоотражающая пленка

Настоящий барьер для солнечного света - светоотражающая зеркальная пленка на окна. Она запросто клеится собственными руками, стоит недорого и эффективно сохраняет внутри помещения прохладу.

Потолочный вентилятор

Потолочный вентилятор - отличное средство от жары в квартире. Причем в летний период он должен вращаться против часовой стрелки, чтобы на высокой скорости создавался холодный воздушный поток. Этот эффект прохладного ветерка точно поможет хорошо себя чувствовать в самые жаркие дни.

Несколько новых растений

Растения помогают сохранять прохладу в доме, так как они в процессе переработки влаги частично теряют ее. Поэтому воздух в доме с зеленью чище и свежее. Особенно могут помочь сохранить прохладу алоэ вера, пальма Арека, фикус Бенджамина, домашний папоротник, щучий хвост, золотой потос. Правда, следует помнить про их частый полив.

Ледяные бутылки

Простой, но эффективный способ охладить дом - поставить в помещениях бутылки с водой, которые были заморожены в холодильнике. Лед будет таять и отдавать влажную прохладу. Дышать станет значительно легче. Все бутылки можно замораживать повторно после того, как лед в них растаял. А если уж жарко невыносимо, то такую бутылку можно покатать ступней. Самочувствие мгновенно улучшится.

МОСКВА, 15 сен - РИА Новости. Ученые из МГУ и Японии научились почти мгновенно менять поляризацию света и снижать его скорость в десять раз, что поможет созданию световых компьютеров, сверхбыстрых дисплеев и новых компьютерных сетей, говорится в статье, опубликованной в журнале Physical Review Applied.

"Мы работаем совместно с профессором Иноуэ давно, и за эти пятнадцать лет узнали об этих удивительных наноструктурах много нового. В наших экспериментах с реальными кристаллами мы добились того, что свет из них выходит примерно в десять раз позже, чем если бы шел просто в воздухе", — рассказывает Татьяна Долгова из Московского государственного университета имени М.В. Ломоносова.

Физики впервые добились бесконечной фазовой скорости света внутри чипа Ученые из Гарварда создали необычный метаматериал с нулевым коэффициентом преломления, благодаря чему один из компонентов световых волн будет двигаться в чипах, изготовленных из этого материала, с бесконечно высокой скоростью.

Долгова, ее коллеги по МГУ и физики из Технологического университета Тойохаши (Япония) добились подобного эффекта благодаря так называемым магнитофотонным кристаллам - особым структурам, которые особым образом взаимодействуют со светом, меняя его поляризацию, скорость движения и ряд других параметров.

Идея создания такого кристалла, представляющего собой набор из оптических резонаторов, особым образом "замедляющих" движение света через кристалл, была впервые предложена в 1998 году японским физиком Мицутеру Иноуэ (Mitsuteru Inoue), одним из авторов статьи. Подобное "замедление" света, как объясняет Долгова, необходимо для создания голографической световой памяти, трехмерных экранов, а также сенсоров магнитного поля.

Эти кристаллы и связанные с ними феномены долгое время оставались предметом теоретических выкладок до тех пор, пока Долгова, Иноуэ и их коллеги не осознали, что таких эффектов можно добиться, используя не обычные оптические резонаторы, а эффект, открытый еще в 19 веке британским физиком Майклом Фарадеем.

Физики обнаружили самый медленный процесс во Вселенной Группа ученых, работающих в проекте EXO, на конференции в Мюнхене обнародовала результаты измерений периода полураспада одного из изотопов ксенона - ксенона-136 - по типу двунейтринного двойного бета-распада. Как оказалось, этот процесс занимает 2,11*10^21 лет.

Он обнаружил, наблюдая за светом, через особую призму, пропускающую только лучи одной поляризации, что свет исчезал или тускнел, если лучи лампы проходили через магнит. Говоря языком физики, Фарадей установил, что плоскость поляризации света поворачивается при прохождении через намагниченное вещество.

Используя этот эффект, физики из МГУ и Японии добились того, что плоскость поляризации "медленного" света поворачивается так быстро, что изменения можно заметить даже при сверхкоротких импульсах лазера длиной в 200 фемтосекунд. (фемтосекунда — это одна миллионная часть наносекунды).

Как признают ученые, пока этот эффект нельзя использовать для создания суперкомпьютеров из-за его малой силы, однако эти ограничения не являются принципиальными. Таким образом, российские физики показали, что сверхбыстрая модуляция света в магнитофотонных кристаллах возможна и имеет более чем хорошие перспективы.

Светодиодные лампы быстро и уверенно вошли в наш быт, популярность их растет с каждым годом, а стоимость производства неуклонно снижается. Так как вопросы экономии электроэнергии актуальны для всех, то замена лампочек накаливания на светодиодные — дело ближайшего будущего. Как правильно выбирать светодиодные источники света?

Преимущества, недостатки и особенности светодиодных ламп

Светодиодные лампы или LED-лампы имеют свои преимущества и недостатки, а также особенности использования. Преимущества известны всем: они потребляют мало энергии и срок их службы больше 10 лет, по заверениям производителей. Дополнительные плюсы – могут иметь совсем маленькие размеры, не нагреваются, отлично работают на холоде, выдерживают вибрацию и сотрясения, а утилизация таких источников света не вредит природе – они не содержат ртути, как лампы дневного света.

К недостаткам относят довольно высокую стоимость и наличие эффекта деградации. В процессе эксплуатации светодиоды теряют свои свойства (деградируют) и яркость свечения их уменьшается. Если светодиод потерял больше 30% яркости, он считается вышедшим из строя. При высокой температуре это явление выражено больше.

Очень часто недостатком LED-ламп считают неприятный синеватый оттенок свечения светодиодных ламп. На самом деле это не недостаток – это особенность. Если такой свет раздражает, то всегда можно купить лампы с более теплым желтовато-белым цветом свечения.

К особенностям также относят узкую направленность свечения светодиодных ламп. Да, светодиод излучает в одну сторону. Но конструкция лампы может включать разное количество светодиодов, может иметь рассеиватель или обходиться без него. Узконаправленный свет идеально подходит для прожекторов и ручных фонариков, а для люстры лучше выбрать лампочки, дающие рассеянный свет.

Особенности источников светового излучения не следует считать недостатками. Нужно понимать, как их правильно использовать. Впрочем, обычные лампочки накаливания, тоже имеют особенность – они сильно нагреваются. Мощные лампы способны расплавить пластиковый плафон и даже поджечь его. Несмотря на это, их используют повсеместно, надевать на них самодельный бумажный или тканевый абажур никому не приходит в голову.

Для большинства из нас вопрос цены не требует обсуждения. Здесь все ясно. Есть деньги – почему бы не купить светодиодные светильники? Посмотреть, оценить и сделать выводы самостоятельно. Нет денег – говорить не о чем, нужно найти самые дешевые лампочки накаливания и ими пользоваться.

Гораздо интереснее тема безопасности. Здоровье важнее всего, поэтому все, что известно о возможном вреде светодиодного излучения на человека следует узнать прежде, чем идти в магазин приобретать экономные лампочки.

Как устроена светодиодная лампа?

LED-лампа это достаточно сложный светоизлучающий прибор. Источником излучения служат светодиоды — полупроводниковые приборы, преобразующие электрическую энергию в свет. Их нельзя подключать непосредственно к сети, поэтому каждая лампа содержит внутри плату с вмонтированными светодиодами, электронный драйвер для преобразования электропитания от сети, все это встроено в металлический радиатор для охлаждения. Снаружи есть цоколь определенного вида для подключения в любой стандартный светильник и защитный колпак, матовый или прозрачный, обычно он служит для рассеивания света.

Все светодиоды, в зависимости от химического состава кристалла, излучают свет определенного оттенка. Но не белый. Белый – это смесь всех цветов спектра. Чтобы получить белый свет, применяют разные технологии:

  • помещают на одной матрице много красных, голубых и зеленых светодиодов, излучение которых смешивается при помощи линзы;
  • покрывают голубые или ультрафиолетовые светодиоды люминофором, поглощающим и преобразующим излучение в белый свет;
  • желто-зеленый или зеленый с красным люминофор наносят на голубой светодиод, в результате чего смешиваются два или три излучения, образуя белый либо близкий к белому свет.

Какого цвета излучение у конкретной лампочки можно узнать по шкале на упаковке. Там указана цветовая температура в градусах по шкале Кельвина, а для удобства есть цветная шкала, на которой отмечен цвет. Для большинства людей комфортным является белый свет с желтоватым оттенком.

Что еще полезно знать

Разный спектр излучения по-разному действует на людей, животных, растения. Например, использование красных и синих светодиодов в сочетании позволяет создать спектр излучения, способствующий ускоренному росту растений. Такие светодиодные светильники используются в теплицах.

Недорогие ультрафиолетовые светодиоды, покрытые люминофором, дают белый свет чуть голубоватого оттенка. Такое свечение, как ни странно, активизирует человеческий организм, провоцирует повышенное выделение гормона серотонина, повышающего работоспособность. Но такое искусственное возбуждение приводит к раздражительности, ведь человеку и отдыхать нужно… В спальне такая лампочка, пожалуй, будет неуместной.

Большой плюс LED-освещения - светодиодный свет не мерцает, как люминесцентные лампы дневного света. Однако это касается изделий только высокого уровня с качественными блоками питания (драйверами). Производители дешевых лампочек экономят, их продукция пульсирует ничуть не хуже люминесцентных. Мерцание это нельзя заметить, но на зрение оно оказывает вредное воздействие. Подробнее о безопасности светодиодных ламп на safetydom.net .

Как выбрать светодиодную лампу

Купить LED-лампу не проблема. Но их много разных. Отличаются по мощности и по форме, по цоколю и по оттенку свечения. И по цене тоже разные. Что брать?

Как рассчитать мощность лампы

Каждый светильник рассчитан на лампы определенной мощности и размеров, они должны иметь соответствующий цоколь, все остальные параметры выбирают на свое усмотрение.

Чтобы в комнате было светло, можно предварительно рассчитать мощность по нормам в зависимости от площади помещения. Или подобрать лампочки «методом проб и ошибок». Так как большинство из нас знает, какие по мощности лампы накаливания или «экономки» уже используются, то LED-лампы подбирают по этой таблице.

Как выбрать цоколь лампы

Цоколь – это то место, каким лампочка вставляется или вкручивается в светильник. Покупая новую люстру, обычно приобретают и лампочки к ней в том же магазине. Продавец подберет и проконсультирует. Выбирая для старой люстры или бра, делают так: выкручивают из нее лампочку и берут с собой в магазин. Типов цоколей не так много, их можно просто запомнить визуально.

Первое и самое важное – известные производители светодиодных ламп поставляют на рынок проверенную и сертифицированную продукцию, дают гарантию на несколько лет. Таким источникам света можно доверять, они безопасны для здоровья. Лучше отдавать предпочтение популярным торговым маркам, например, Philips, Gauss, Kreonix, Shine, Verbatim, Panasonic, Osram и др. Всевозможные подделки дешевле, но за счет чего они дешевле – неизвестно. Вредны ли они для здоровья – это тоже вопрос без ответа. Вот несколько полезных советов от сайт:

  • Не покупать дешевые лампы. Цены у разных производителей качественной продукции примерно одинаковы. Если лампочка имеет такие же параметры, как и фирменная, но цена ее в два раза ниже, — пройдите мимо. Это некачественная подделка. Она может быть небезопасной.
  • Проверить на мерцание. Можно провести простой опыт, а именно, посмотреть на светильник через цифровую камеру. Можно через камеру смартфона. На экране сразу видно пульсирующий свет (стробоскопический эффект). Пример на этом видео:

Изобретение предназначено для использования в холодильной технике, в частности в домашнем холодильнике. Последний содержит панель краевой засветки, выполненную из практически прозрачного материала. По крайней мере, одна из противоположных поверхностей панели находится внутри холодильника. На нее нанесена матрица точек для получения счетоводного эффекта для внутреннего объема холодильника. Изобретение обеспечивает улучшение освещения внутреннего объема холодильника при уменьшении потребления на это мощности. 9 з.п. ф-лы, 10 ил.

Изобретение относится к осветительной системе, в частности к системе для использования в домашнем холодильнике. Обычные домашние холодильники освещаются внутри одним источником света, как правило, обычной лампочкой накаливания, находящейся внутри прозрачной или -полупрозрачной оболочки и расположенной на одной из внутренних стенок холодильника. Источник света приводится в действие при открывании дверцы холодильника посредством соответствующего электромеханического переключающего устройства. Такие источники света дают плохое освещение вследствие своего местоположения внутри холодильника или низкой потребляемой мощности световой лампочки. Улучшение освещенности за счет увеличения количества источников света снижает вместимость и повышает стоимость холодильника. Кроме того, такое увеличение количества источников света внутри холодильника также увеличивает общее количество рассеиваемого тепла. Это увеличение рассеяния тепла вызывает нежелательное повышение температуры внутри холодильника, которое должно компенсироваться путем увеличенного охлаждающего эффекта. То же самое имеет место, когда используется более мощный один источник света, потребляющий большую мощность, вместо увеличения количества источников света. Кроме того, непрерывное освещение домашних холодильников, например, в случае, когда холодильник имеет прозрачную дверцу, через которую можно видеть его содержимое, также является нежелательным, когда тепло рассеивается от нескольких источников света или от одного более мощного источника света. Состояние современного уровня техники в освещаемых дисплейных системах краевой засветки, используемых в вертикально устанавливаемых знаках, отражено в Европейской выложенной заявке на патент 549679. В этой заявке описано решение проблемы неравномерного освещения системы краевой засветки путем нанесения матрицы точек на двух противоположных поверхностях прозрачного листа, который является листом краевой засветки. В действительности, точки "отводят" свет от прозрачного листа, и матрица регулируется таким образом, что плотность точек изменяется по поверхности листа для выравнивания освещенности. Неожиданно теперь было обнаружено, что внутреннее освещение домашнего холодильника может быть значительно улучшено путем использования панели краевой засветки из прозрачного или полупрозрачного материала, на которой расположена матрица точек для обеспечения световодного эффекта. Освещение, обеспечиваемое панелью краевой засветки, более равномерно распределяется по всему холодильнику. Следовательно, холодильник может освещаться источником света, имеющим уменьшенное потребление мощности по сравнению с обычными источниками света, используемыми для освещения холодильника. Поэтому дополнительным преимуществом настоящего изобретения является способность обеспечения непрерывного освещения без значительного увеличения количества рассеиваемого тепла. Таким образом, в первом варианте настоящего изобретения предлагается холодильник, способный внутренне освещаться, в котором освещение обеспечивается панелью краевой засветки, выполненной из практически прозрачного материала, имеющего две противоположные поверхности, по крайней мере, одна из которых находится внутри холодильника и на которой нанесена матрица точек для получения световодного эффекта внутри холодильника. Могут использоваться одна или несколько панелей краевой засветки. Хотя панель краевой засветки может являться боковой панелью холодильника, включая заднюю и верхнюю, предпочтительно, чтобы панель краевой засветки была в виде полки, на одной или предпочтительно обоих противоположных поверхностях которой нанесена матрица точек. Предпочтительно панель краевой засветки формируется из акрилового листа, такого как тот, который продается под торговой маркой Реrарех фирмой Imperial Chemical Industries plc. Предпочтительно такой лист включает оптический усилитель яркости, такой как продаваемый английской фирмой Ciba Specialty Chemical Ltd под торговой маркой Ovitex OB, с целью улучшения пропускания света листом. Обычно толщина панели краевой засветки менее 15 мм и предпочтительно в пределах 6-8 мм. Предпочтительно к поверхности панели краевой засветки, несущей матрицу точек, прикрепляется защитный прозрачный или полупрозрачный слой. В частности, предпочтительно, чтобы прозрачный или полупрозрачный слой прикреплялся непосредственно к поверхности, несущей матрицу точек. Предпочтительно к поверхности, несущей матрицу точек, прикрепляется рассеиватель света. В частности, предпочтительно, чтобы такой рассеиватель света также функционировал в качестве вышеупомянутого защитного слоя. Обычно рассеиватель света формируется из листа подходящего материала, такого, который используется для панели краевой засветки, например акрилового листа, и предпочтительно лист имеет толщину до 3 мм. Предпочтительно, чтобы панель краевой засветки являлась боковой панелью холодильника, и к поверхности, противоположной поверхности, несущей матрицу точек, прикрепляется отражательный слой. Обычно такой слой формируется из листа подходящего материала, такого как белый или окрашенный акриловый лист, и предпочтительно лист имеет толщину до 3 мм. В частности, в предпочтительной форме, когда панель краевой засветки является боковой панелью, она является частью осветительного узла, который включает как рассеиватель света, так и отражающий слой. В предлагаемом устройстве матрица точек служит для обеспечения обычного светорассеивающего эффекта, как описано в известных устройствах. Для обеспечения равномерного распределения света от панели краевой засветки предпочтительно, чтобы часть поверхности, покрытая точками, увеличивалась с увеличением расстояния от источника света. Обычно часть поверхности, покрытая точками, составляет от 0,05 части вблизи от источника света и от 0,15 до 0,55 части, например 0,16, на самом дальнем расстоянии от источника света. Хотя это увеличение может достигаться путем увеличения количества точек на единицу площади, дополнительно предпочтительно, чтобы увеличение достигалось за счет увеличения диаметра точек и, следовательно, матрица точек обеспечивала точки меньшего диаметра вблизи источника света и большего диаметра при удалении от источника света. Обычно диаметр точки вблизи источника света составляет около 0,3 мм и на наибольшем расстоянии от источника света он равен 0,7 мм. В частности, предпочтительной является матрица точек, в которой расстояние между центрами соседних точек является одинаковым. Обычно точки являются белыми. Однако для достижения желательного эстетического эффекта могут использоваться точки другого цвета. В предлагаемом устройстве может использоваться один источник света. Однако, в частности, в случае, когда расстояние превышает расстояние, на которое должен распространяться свет внутри панели, далее называемое расстоянием распространения, могут использоваться два или более источника света. Предпочтительно в случае большого расстояния распространения два или более источников света располагаются на противоположных краях панели краевой засветки. Обычно используются два противолежащих источника света, когда расстояние распространения находится в пределах 900-1200 мм. Изобретение далее иллюстрируется со ссылкой на следующие чертежи, на которых: фиг.1 - часть матрицы точек на панели краевой засветки; фиг. 2 - вид с частичным разрезом осветительного узла, который включает панель краевой засветки; фиг. 3 - обычный холодильник, в котором указаны альтернативные положения для панели краевой засветки; фиг. 4 - обычный холодильник, в котором указаны дополнительные альтернативные положения для панели краевой засветки; фиг.5 - расположение источника света вдоль края панели краевой засветки; фиг.6 - перспективный вид разреза по линии А-А фиг.5, фиг. 7 - разрез обычного холодильника, указывающий возможные положения для панели краевой засветки и источника света; фиг. 8 - фотография обычного холодильника, который освещается, используя обычную осветительную систему; фиг. 9 - фотография обычного холодильника, который освещается, используя панель краевой засветки, расположенную в виде полки;
фиг.10 - фотография обычного холодильника, который освещается, используя панель краевой засветки, расположенную в виде задней панели. На фиг. 1 показана панель краевой засветки 11, на одной поверхности которой отпечатана матрица точек 12. На фиг.2 показана панель краевой засветки 21, аналогичная представленной на фиг.1 и являющаяся подходящей для использования в качестве боковой панели в осветительном узле, включающем рассеиватель света 22 и отражательный слой 23. На фиг.3 показан обычный холодильник 31, имеющий три возможных положения для размещения панели краевой засветки. Панель краевой засветки может располагаться как верхняя панель 32 и/или дверная панель 33, при этом в этих положениях предпочтительно используется осветительный узел, аналогичный показанному на фиг. 2. Панель краевой засветки может также располагаться как полка 34, при этом предпочтительно, чтобы панель краевой засветки имела матрицу точек, отпечатанных на обоих поверхностях. На фиг.4 показан обычный холодильник 41, имеющий два возможных положения для размещения панели краевой засветки. Панель краевой засветки может располагаться на месте задней панели 42 и/или боковой панели 43. На фиг. 5 показана панель краевой засветки 51 с кожухом для источника света 52, расположенным вдоль края и электрически подключенным посредством кабеля к источнику питания и управляющему устройству 54. На фиг. 6 представлен разрез по линии А-А фиг.5, показывающий, что источник света 61 плотно прижат к краю панели краевой засветки 62. На фиг. 7 показан разрез обычного холодильника 71 для иллюстрации возможного положения панели краевой засветки 72 и источника света 73. Источник света 73 может располагаться на внешней поверхности 74 холодильника, а панель краевой засветки может проходить от внешней поверхности 74 через изоляцию холодильника из пенистого материала 75 внутрь холодильника. На фиг. 8 показан обычный холодильник, освещаемый с использованием обычной лампочки накаливания. Как видно, освещающий эффект локализован областью вблизи лампочки, и остальная часть внутренности холодильника является сравнительно темной. На фиг.9 показан обычный холодильник, освещаемый, используя панель краевой засветки, которая расположена на месте полки. Источник освещения имел ту же самую интенсивность света, как у лампочки, использованной в холодильнике, показанном на фиг.8. Как видно, освещение более равномерно распределено внутри холодильника. На фиг. 10 показан обычный холодильник, освещаемый, используя панель краевой засветки, которая расположена на месте задней панели. Источник освещения имел ту же самую интенсивность света, как у лампочки, использованной в холодильнике, показанном на фиг.8. Как видно, освещающий эффект заключается в более равномерно распределенном освещении внутри холодильника даже по сравнению с панелью краевой засветки, используемой, как показано на фиг.9.

Формула изобретения

1. Холодильник, освещаемый внутри, в котором освещение осуществлено панелью краевой засветки из практически прозрачного материала, имеющей две противоположные поверхности, по меньшей мере, одна из которых находится внутри холодильника и на которую нанесена матрица точек для получения световодного эффекта внутри холодильника. 2. Холодильник по п. 1, в котором панель краевой засветки является боковой панелью холодильника. 3. Холодильник по п. 2, в котором панель краевой засветки является частью осветительного узла, который включает как рассеиватель света, который нанесен на поверхность, несущую матрицу точек, так и отражательный слой, который также нанесен на поверхность, противоположную поверхности, несущей матрицу точек. 4. Холодильник по п. 1, в котором панель краевой засветки является полкой. 5. Холодильник по п. 4, в котором панель краевой засветки имеет матрицу точек, нанесенную на обе противоположные поверхности. 6. Холодильник по любому из пп. 1-5, в котором панель краевой засветки выполнена из акрилового листа. 7. Холодильник по п. 6, в котором акриловый лист включает устройство повышения яркости. 8. Холодильник по любому из пп. 1-7, в котором на поверхности панели краевой засветки, которая несет матрицу точек, доля поверхности, покрытая точками, увеличивается с увеличением расстояния от источника света. 9. Холодильник по п. 8, в котором доля поверхности, покрытая точками, составляет от 0,05 вблизи от источника света и находится в пределах от 0,15 до 0,55 на самом дальнем расстоянии от источника света. 10. Холодильник по п. 9, в котором увеличение доли поверхности, покрытой точками, достигается путем увеличения диаметра точек.