Что такое лужение. Лужения металлов - пайка

Следующая страница>>

§ 97. ЛУЖЕНИЕ. Инструменты и приспособления, применяемые при лужении. Приемы лужения.

Лужение. Лужением называется процесс покрытия поверхностей изделий тонким слоем расплавленного олова или сплава олова со свинцом.

Металл, наносимый на поверхность изделия, называется полудой.

Лужение чаще всего выполняется при подготовке деталей к паянию, а также для предохранения изделий от ржавления (коррозии). Иногда лужение производится для специальных целей, например перед заливкой подшипников.

В качестве полуд применяется чистое олово, а для неответственных деталей олово иногда заменяют более дешевым сплавом, состоящим из 5 частей олова и 3 частей свинца. Сплавы (оловянно-свинцовые) нельзя применять при лужении посуды для пищи.

Лудят двумя способами: натиранием (большие изделия) и погружением (небольшие изделия) в расплавленную полуду.

Процесс лужения состоит из трех основных операций: подготовки поверхности, приготовления полуды и лужения.

Подготовка поверхности к лужению. Поверхность, подлежащая лужению, должна быть тщательно очищена от грязи, окалины, жиров и т. д. Очистка поверхности изделия производится до металлического блеска при помощи шабера, напильника, наждачной бумаги, кордовых щеток и т. д. Большие поверхности для облегчения работы травят разбавленной соляной или серной кислотой.

Обезжиривают и удаляют окисную пленку с поверхности изделия промывкой (протравливанием) в водном растворе соляной кислоты. Затем поверхность промывают чистой водой и протирают насухо. В целях предохранения очищенной поверхности от окисления ее смазывают хлористым цинком и сверху посыпают порошком нашатыря.

При выполнении травления и нейтрализации следует работать в резиновых перчатках, фартуке и защитных очках во избежание ожогов и порчи одежды.

Инструменты и приспособления, применяемые при лужении. При лужении пользуются различными инструментами и приспособлениями, например шаберами различных размеров и форм для очистки поверхностей деталей от ржавчины; паяльной лампой для нагревания деталей небольшого размера; щеткой для очистки поверхностей изделий от грязи; кистью (волосяной) для смачивания деталей кислотой; клещами для поддерживания горячих деталей.

Приемы лужения. Лужение методом погружения в расплавленную полуду заключается в том, что подготовленную к лужению деталь сначала погружают в лудильную ванну с хлористым цинком. Затем клещами вынимают изделие из ванны и, не удаляя хлористый цинк с поверхности, погружают в ванну с расплавленным оловом (рис. 179, а).

Рис. 179. Лужение деталей :

а - облуживание детали погружением в ванну с оловом, б - нагрев детали для облуживания, в - облуживание нагретой детали путем растирания олова

В ванне необходимо держать изделие до полного прогрева (270-300°), после чего его вынимают из ванны, встряхивают для удаления излишнего слоя полуды. Когда изделие остынет, его промывают в воле или растворе извести для удаления хлористого цинка. Затем сушат в чистых древесных опилках.

Лужение методом натирания производится после предварительной подготовки изделия (очистки, промывки, травления).

Изделие нагревается медленно и равномерно на древесном угле (рис. 179, б) до температуры 225-250°, затем на нагретую поверхность насыпают припой и, после того как он начнет плавиться, его быстро растирают щеткой или чистой холщовой тряпкой (рис. 179, в) по всей поверхности, удаляя излишний слой полуды.

Если из-за плохой очистки детали олово в каком-либо месте не пристало, это место снова зачищают напильником иди шабером, подогревают, наносят олово и протирают тряпкой или паклей.

Когда изделие остынет, его протирают смоченным песком, промывают водой и сушат.

Во время выполнения операций лужения нельзя вдыхать пары кислоты и нашатыря; горячие детали следует брать клещами; необходимо при погружении деталей пользоваться рукавицами; нужно остерегаться попадания кислоты на тело или одежду.

Лужение - процесс покрытия поверхности дета­ли (изделия) тонким слоем расплавленного олова или оловянно-свинцовистым сплавом (припоем). Часть олова или его сплава, которая наносится на поверх­ность металла, образует полуду.

Лужение металлоизделий производится с целью защиты их от ржавления (коррозии), подготовки поверхностей деталей к паянию мягкими припоями или перед заливкой подшипников баббитом. Изделия, изготовленные, например, из меди, особенно пище­вые котлы, окисляясь, покрываются зеленой плен­кой; пища из такой посуды непригодна к употребле­нию, так как она содержит ядовитые окислы. Олово же не подвергается окислению, поэтому оно издавна применяется для защиты от коррозии консервной тары, столовых приборов, кухонной посуды и других изделий, связанных с хранением, приготовлением и транспортированием пищевых продуктов. Применяется олово также для предохранения от окисления кон­тактов и деталей радиоаппаратуры, для защиты ка­белей от действия серы, находящейся в электроизо­ляционном слое резины, и т. п. Оловянные покрытия чрезвычайно пластичны и легко выдерживают валь­цовку, штамповку и вытяжку. Детали, подвергнутые лужению, легко паяются.

Выбор полуды и флюсов. Для лужения пищевой тары и посуды пользуются только чистым оловом марок 01 и 02. В частности, жесть для консервных банок лудят оловом марки 01, содержащим 99,9% чистого олова и не более 0,1% примесей. Марка 02 с содержанием олова 99,5% и примесей не более 0,5% применяется для лужения кухонной посуды и котлов для приготовления пищи. Для лужения худо­жественных изделий пользуются белой блестящей полудой, состоящей из сплава, содержащего 90% олова и 10% висмута. В качестве полуд для неответ­ственных деталей можно применять сплав, состоя­щий из пяти частей олова и трех частей свинца. В ряде случаев лужение выполняют оловянно-свинцо - вистыми припоями.

Обезжиривание и удаление окисной пленки с поверхности производится путем травления в водном растворе соляной или серной кислоты. Для предох­ранения очищенной поверхности детали от окисле­ния ее смазывают раствором хлористого цинка и сверху посыпают порошком нашатыря.

Методы лужения. Полуды можно наносить го­рячим путем и методом гальванического или кон­тактного осаждения. Горячий метод лужения осу­ществляется двумя способами: погружением детали в ванну с расплавленной полудой или растирани­ем полуды на предварительно нагретой до 220-250° поверхности.

Осаждение олова может осуществляться из кислых или щелочных электролитов. В состав кислых электро­литов входят различные элементы, например: серно­кислое олово 40-50 г/л, серная кислота 50-80 г/л, сер­нокислый натрий 50 г/л, фенол технический (сырая карболовая кислота) или крезол 2-10 г/л, клей столярный 2-3 г/л и др. Рабочая температура ванны должна поддерживаться в пределах 15-25°С.

В практике слесарной обработки наиболее часто приходится выполнять лужение деталей (изделий) способом погружения или способом растирания. Го­рячее лужение благодаря своей простоте и легкости выполнения широко применяется и в ряде случаев заменяет электролитический метод лужения.

Процесс горячего лужения состоит из подготовки поверхности детали и полуды, лужения и окончатель­ной обработки облуженной поверхности (сушки, полирования и др.).

Подготовка поверхности к лужению начинается с тщательной очистки ее от грязи, жиров и окислов, препятствующих ровному и прочному соединению олова с облуживаемым металлом. Применяют меха­нический и химический способы очистки.

Механический способ состоит в том, что поверх­ность детали очищают до блеска с помощью шабе­ров, напильников, абразивной шкурки, механизиро­ванных щеток и т. д.

Химический способ подготовки сводится к трав­лению поверхности металла кислотами. Поверхнос­ти деталей из стали, меди, латуни наиболее часто обрабатывают 20-30-процентным водным раствором серной кислоты в течение 15-25 мин. Медные и латунные детали можно травить раствором, содер­жащим 10% серной кислоты, 5% калиевого хром­пика и 85% воды. Травление производится в ваннах

Стеклянных, металлических, эмалированных и др. Выдержка при травлении поверхностей деталей в таком растворе составляет 1,5-2 мин. Подготовка к лужению заканчивается тщательной промывкой де­тали в проточной воде, очисткой поверхности влаж­ным песком, окончательной промывкой в горячей воде, притиркой и сушкой. Для предохранения ОЧИ­щенной поверхности от окисления ее смазывают раствором хлористого цинка и сверху посыпают порошком нашатыря.

Приемы лужения. Лужение способом погружения в расплавленную полуду заключается в том, что под­готовленную к лужению деталь сначала погружают в ванную с раствором хлористого цинка, затем с по­мощью клещей, плоскогубцев или специальных крюч­ков деталь вынимают из ванны и, не удаляя с по­верхности хлористый цинк, погружают в ванну с рас­плавленной полудой, выдерживая в ней 2-3 мин. После этого облуженную деталь извлекают из ванны и сразу встряхивают, чтобы удалить излишки полу­ды. Пока деталь еще находится в горячем состоянии, ее быстро обтирают паклей с нашатырем для полу­чения равномерного беспористого и гладкого слоя по­луды. После остывания деталь промывают в воде и высушивают. Хорошие результаты дает сушка в дре­весных опилках.

При лужении способом растирания подготовлен­ную к лужению поверхность детали смазывают ра­створом хлористого цинка, затем посыпают порош­ком нашатыря и нагревают равномерно пламенем паяльной лампы или в горне на древесном угле. Ког­да хлористый цинк начнет закипать, на поверхность детали наносят олово в виде маленьких кусочков или порошка. Полуда, вступив в соприкосновение с на­гретой поверхностью детали, начнет плавиться; ее сразу растирают холщовой тряпкой или паклей, пе­ресыпанной порошком нашатыря. Растирать полуду нужно быстро, постепенно переходя от одного учас­тка покрываемой поверхности к другому.

В процессе лужения необходимо внимательно сле­дить за нагревом детали, так как при перегреве по­луда сгорает. Признаком перегрева является появле­ние синеватого оттенка на поверхности полуды. 06-

Луженные поверхности нужно протереть влажным пес­ком, тщательно промыть чистой водой, высушить и при надобности отполировать мягкой тряпкой или фланелью. При обнаружении мест с дефектами лу­жения (неприставшая полуда, пористость и т. п.) их нужно снова зачистить, протравить и произвести пов­торное лужение способом погружения либо растира­нием. Следует помнить, что чем лучше подготовлена поверхность под покрытие, тем ровнее ляжет полуда и тем прочнее будет слой.

Вы, наверное, замечали, что когда два соединенных между собой проводника, при долгой работе начинают греться. Особенно это заметно при увеличении мощности проходящего тока. Данное явление происходит при образовании оксидной пленки между проводниками, которая нарушает контакт. Недостаточный контакт между проводами, приводит к их нагреву. Для обеспечения долгого и надежного контакта, используют процесс лужения проводов.

Как залудить паяльник: особенности

Лудить, это значит покрывать металлические изделия тонким слоем олова, которое в свою очередь предотвращает процесс окисления металлических поверхностей. Но если брать во внимание облуживание паяльника, то тут процесс немного отличается.

Залуживание паяльника пошагово:

  • Подготовка поверхности;
  • Лужение.

Перед тем как облудить паяльник, необходимо подготовить рабочую поверхность. В первую очередь, если паяльник совершенно новый, нужно заточить жало устройства. Для того чтобы сделать это правильно, следует учитывать процессы в которых будет использоваться паяльник.


Жалу паяльника можно придать форму клина. Для этого жало вынимается из устройства, и при помощи напильника или электростанка, жало с двух сторон затачивается под углом до 40 0 . Если паяльник используется для работы с мелкими радиодеталями, то ему придают форму конуса, которая обеспечивает более удобную работу.

Обратите внимание! Ширина острия клина должна быть не менее одного миллиметра. Если жало в виде конуса, то рабочая площадь составляет около двух миллиметров.

Если заводская форма жала устраивает, то важно понимать, что все изделия на заводе изготовителе, покрывают патиной – оксид кислорода и меди, которая имеет зеленоватый оттенок. Перед лужением жала устройства, необходимо используя наждачную бумагу с мелким зерном, удалить данное покрытие.

После этого, жало устанавливается в устройство, и подключается к электросети. Необходимо дождаться равномерного прогрева свей поверхности жала, после которого и производиться лужение.

При нагревании до оптимальной температуры, жало устройства обрабатывают смолой или куском канифоли. Покрывается вся поверхность.

Лужение проводов: технология

Медь и ее сплавы со временем окисляются под воздействием кислорода. Для того чтобы соединения медных проводников в процессе работы не окислялись, необходимо их залудить оловом.

Для работы потребуется:

  • Паяльник;
  • Припой;
  • Флюс или канифоль.

Правильно залудить медный провод, получится только хорошо разогретым паяльником. Поэтому пред началом работ, включаем его в сеть и оставляем разогреваться.

После этого, в зависимости от материала обработки, выполняется следующее. Если медная жила покрывается канифолью, то ее помещают в емкость с данным материалом и нагревают паяльником. Если используется флюс, то провод покрывается жидким флюсом и прогревается паяльником.

Обратите внимание! Чем лучше прогрев металла, тем качественнее лужение медного проводника.

Затем, на разогретое жало паяльника берется необходимое количество олова и используя данное устройство, распределяется по всей поверхности обработанного провода.


Для того чтобы залудить медный кабель большого сечения, используют тигель (емкость для плавления). В этом случае, в разогретую емкость до температуры плавления олова, помещаются куски металла. Жила кабеля обрабатывается флюсом или канифолью и помещается в тигель. Таки образом, достигается, нормальный нагрев жилы и равномерное распределение олова по ее поверхности.

Что нужно и как залудить и припаять провода от наушников

Очень часто, под воздействием механических нагрузок, выходят из строя наушники. Эти приводит к обрыву слаботочных проводников. Данные проводники в устройстве, достаточно тонкие, поэтому технология лужения и пайки немного отличается.

Особенности работы:

  • Тонкое жало паяльника;
  • Использование канифоли;
  • Применение проволочного припоя.

Начать работу, следует с разборки старого девайса. В первую очередь отпаиваются оборванные проводники. Далее производится подготовка к пайке нового провода.

Так как, слаботочные проводники для наушников, для изоляции друг от друга покрывают лаком, то это в некоторой степени затрудняет процесс припаивания. Для этого, облегчения работ, необходимо удалить слой лака с проводов, тем самым подготовить металл для лужения.

Делается это при помощи разогретого паяльника с использованием канифоли. Жила провода, помещается в канифоль, и разогревается. Затем она кладется на ровную поверхность, на которой легкими движениями от изоляции к концу провода счищается слой лака.

Обратите внимание! Лак следует снять на такое расстояние, при котором касание проводников не приведет к их замыканию.

После этого, используя разогретый паяльник, тонким слоем олова покрываются провода. Стоит отметить, что залуженные провода наушников не только обеспечивают надежный контакт, но и процесс пайки значительно упрощается.

Луженая медь: характеристики и применение

Благодаря своим свойствам, медная проволока, нашла широкое применение, как в бытовых, так и промышленных масштабах. Главной особенностью меди, является устойчивость к различным механическим воздействиям, перепадам температуры и влиянию атмосферных осадков.

Но для улучшения показателей устойчивости меди, используют процесс лужения, при котором она покрывается тонким слоем олова, толщина которого варьируется 1 – 20 микрон.

Процесс лужения медной проволоки:

  • Очистка;
  • Лужение;
  • Выравнивание слоя олова;
  • Охлаждение;
  • Повторное выравнивание;
  • Упаковка.


В первую очередь, катушка с проволокой устанавливается на специальный подающий механизм, посредством которого, она проходит все необходимые процессы.

Сначала, проходя через специальные щетки, которые смачиваются раствором хлорида цинка, проволока очищается. Раствор хлорида цинка, получают путем растворения гранулированного цинка в соляной кислоте.

После того, как проволока прошла очистку, она проходит через ванну, наполненную расплавленным оловом. Данный способ, позволяет добиться равномерного распределения олова по всей поверхности металла.

Обратите внимание! Самым важным при лужении медной проволоки, является не допустить наплывы олова.

Затем, проволоку охлаждают. Происходит это при прохождении ее через ванну наполненную холодной водой. Данные процесс, выполняет функцию улучшения качества соединения олова с медной поверхностью проволоки.

После этого, проволока проходит вторичную обработку щетками, при которой проволока полностью избавляется от наплывов и при необходимости уменьшается ее диаметр.

На приемном механизме, проволока наматывается на катушку и упаковывается.

Как облудить подшипник оловом (видео)

Не имеет значения, какая конструкция у металлического изделия (провод или подшипник). Достаточно часто, корректная работа данных изделий зависит от качества соединения и материалов, которыми оно обработано.

Текущая страница: 1 (всего у книги 2 страниц) [доступный отрывок для чтения: 1 страниц]

Жестяницкие работы
Проолифка стали. Травление и лужение металла. Холодная клепка

Проолифка листовой стали

Проофливкой называется операция покрытия слоем олифы поверхности листов неоцинкованной (черной) стали, применяемой для изготовления жестяницких изделий.

Эта промежуточная операция применяется при изготовлении жестяницких изделий с фальцами, кромки которых перед закалкой должны быть обработаны с целью предотвращения коррозии.

Для проофлировки применяют связывающие вещества – олифы, которые разделяются на натуральные, полунатуральные и искусственные.

Натуральную олифу варят из растительных масел (льняное, конопляное и др.) при температуре 220-230`С.

Для ускорения высыхания в олифу добавляют химическое вещество – сиккатив (свинцово-марганцовистую соль нафтеновой кислоты).

Полное высыхание натуральной олифы наступает через 24 ч при температуре около 20`C.

После высыхания натуральная олифа образует на поверхности эластичную пленку. Цвет льняной олифы от светло-желтого до вишневого, а конопляной – от вишневого до темно-коричневого.

Натуральную олифу используют для проолифки ответственных вентиляционных устройств и изделий, эксплуатированных главным образом на открытом воздухе.

Полунатуральная олифа содержит не менее 55% растительного сгущенного масла, разбавленного менее ценными, чем растительное масло, растворителями.

К полунатуральным олифам относятся: оксоль, оксоль соевая и оксиполимеризованная.

Чаще применяется олифа оксоль.

Продолжительность высыхания полунатуральных олиф почти такая же, как и натуральных олиф. Примяняют полунатуральные олифы для разведения густотертых масляных красок, используемых для окраски неоветственных жестяницких изделий.

Искусственная олифа изготовляется из смол или минеральных масел путем их термической и химической обработки.

К искусственным олифам относятся: сунтол, карбониль и др. Эти олифы применяют наравне с полунатуральными олифами.

Поверхности жестяницких изделий, изготовляемых из листовой неоцинкованной стали, покрывают олифой двумя способами: ручным и машинным.

Проолифка листовой стали

Поверхности листов кровельной стали покрывают натуральной олифой в целях ее предохранения от ржавления, особенно в тех местах, которые не могут быть впоследствии окрашены масляной краской, например внутреннюю поверхность кромок фальцевых швов.

Ручную проолифку листов кровельной стали выполняют пучком пакли или ветоши. Олифа прозрачна, поэтому в нее добавляют тертый сурик (из расчета 50 г на 1 кг олифы), который окрашивает олифу в коричневый цвет, благодаря чему улучшается наблюдение за качеством проолифки и олифа быстрее высыхает на поверхности листа.

Проолифку вручную осуществляют на деревянном верстаке, обитом сверху тонколистовой сталью.

Поверхность листа смачивают олифой сначала в нескольких местах. Затем берут пучок пакли, смачивают его в олифе и, нажимая на него, покрывают олифой всю поверхность листа.

Покрывают листы равномерным тонким слоем без пропусков и подтеков. Чтобы быстрее высыхала олифа, листы ставят на ребро в деревянные стойки с прокладкой между листами реек.

Проолифленные листы при благоприятных условиях и хорошем качестве олифы высыхают за сутки.

Исходя из этого времени, во избежание простоя в работе, заранее выполняют проолифку нужного количества листов кровельной стали.

Пашинную проолифку стали более производительно выполняют на вальцовочном станке конструкции И.П. Прохорова.

Этот станок (см. рис.) состоит из металлической рамы – 1, корыта – 2 емкостью 50 л для хранения олифы, четырех стальных валков – 6 для прокатки стали, стола – 4, на котором складывают проолифленные листы.

Валки приводят в движение от электродвигателя – 5, мощностью 1.3 квт посредством ременной передачи на шкив – 3.

Первая пара валков служит для предварительного выпрямления обрабатываемого листа. Два других валка имеют резиновые обкладки, что способствует (благодаря более плотному обжатию проолифленного листа) равномерному (тонкой пленкой) распределению олифы на его поверхности, со снятием излишков олифы.

Внутри корыта имеются пластины, которые служат направляющими для листов при их перемещении к валкам.

Эти пластины расположены в два ряда один за другим на расстоянии 20 мм, образуя таким образом щель, через которую перемещаются листы при проолифке.

Наполняется корыто олифой через люк, закрываемый крышкой – 7.

Листы кровельной стали для проолифки опускают в корыто, предварительно наполненное олифой, и протаскивают по направляющим валкам станка. Валки, захватывая лист, подают его из корыта на стол, с которого его снимают и устанавливают для просушки в стойку с прокладкой между листами реек.

При работе на вальцовочном станке надо выполнять требования правил техники безопасности:

1. Быть внимательным,

2. Не подносить руки к валкам ближе 200 мм,

3. Одежда работающего должна быть такой, чтобы исключить возможность захватывания ее частей движущимися деталями станка, т.е. должна застегнута, не иметь свисающих частей, обшлага рукавов застегнуты или затянуты резиновым кольцом, волосы работающего должны быть закрыты головным убором.

Травление металла

Травлением называется операция по удалению с помощью кислот окалины или ржавчины с поверхности изделий, изготовленных из черных металлов, а также окисных пленок с поверхности изделий, изготовленных из цветных металлов и их сплавов.

Травление поверхности металлических изделий осуществляется двумя способами: химическим и электрохимическим.

Травление осуществляется при использовании электрического тока и химических веществ, вредно влияющих на организм человека.

Поэтому во избежание несчастных случаев необходимо при травлении соблюдать меры предосторожности.

Травление выполняют в спецодежде, состоящей из резиновых сапог, перчаток и фартука.

Перед началом работы включают приточную и вытяжную вентиляцию и только после этого приступают к травлению.

При работе с горючими растворами и при переливании кислот из бутылей надевают предохранительные очки.

Заполнение ванн и разлив кислот и щелочей осуществляют при помощи сифонов с плотными кранами, заряжаемыми всасыванием или нагнетанием воздуха.

При сифонном переливании не допускается засасывание воздуха ртом.

При приготовлении травильных растворов с применением кислот вливают кислоту в воду, а не наоборот.

Когда для приготовления травильных растворов применяется соляная, азотная и серная кислота, во избежание получения ожогов от брызг сначала добавляют к проточной холодной воде соляную, затем азотную и в конце серную кислоты.

Нельзя добавлять кислоты к нагретой воде.

Хранение кислот допускается только в закрытых бутылях в специально отведенном помещении (кладовой) с кислотоупорным полом и стенами.

Кладовая должна быть обеспечена надежным вентиляционным отсосом воздуха.

В случае ожога кислотой обожженное место промывают струей воды, затем обращаются к врачу.

На рабочем месте воспрещается курить и принимать пищу. Перед принятием пищи тщательно моют рук.

При получении работы от бригадира или мастера должен быть проинструктирован о правильном ведении процесса травления и технике безопасности.

Все работы по травлению производят в травильном отделении цеха или мастерской.

Травильное отделение размещается в просторном, светлом помещении и обеспечивается естественным светом(0.25 – 0.50 м 2 оконной поверхности на одного работающего), приточно-вытяжной вентиляцией с 5-7-кратным обменом за смену, с расположением вентиляторов вне травильного отделения.

Пол травильного отделения выкладывается метлахскими плитками или кислотоупорным бетоном.

Кислоты для травления металла

Для травления поверхности металлических изделий применяют травильные растворы, главным образом из серной, азотной и соляной кислоты.

Серная кислота H2So4, является продуктом соединения трехокиси серы SO3 с водой.

Удельный вес 1.84.

Химическая чистая серная кислота представляет собой бесцветную маслянистую жидкость.

В любых условиях серная кислота хорошо смешивается с водой, выделяя при этом значительное количество тепла.

Обуглившиеся органические примеси, попадая в серную кислоту, окрашивают ее в коричневый цвет.

На благородные металлы серная кислота не действует. Ее действие на остальные металлы зависит от концентрации.

Для травления поверхности металлических изделий употребляется несколько сортов технической серной кислоты, в частности камерную, содержащую не менее 65% серной кислоты, башенную и гловерную кислоты, содержащие не менее 75-76% серной кислоты.

Для травления часто используют купоросное масло, содержащее не менее 92.5% серной кислоты.

Разводят серную кислоту водой осторожно вливая ее в воду, а не наоборот. При вливании воды в серную кислоту происходит бурное кипение смеси, вызывающее сильное разбрызгивание кислоты. Температура смеси сильно повышается, и если кислоту вливать слишком быстро и много сосуды, в которых производят смешивание, могут лопнуть.

При работе с серной кислотой на руки надевают рукавицы, чтобы избежать ожогов, которые очень болезнены и оставляют красные рубцы, а ан глаза надевают очки.

Серную кислоту хранят в герметически закрывающихся бутылях или свинцовых сосудах.

Соляная кислота HCL представляет собой водный раствор хлористого водорода.

В чистом виде – бесцветная жидкость, сильно пахнущая, с большой упругостью паров уже при температуре 14-16`С.

Концентрированная соляная кислота обычно содержит около 37.4% хлористого водорода.

Удельный вес 1.19.

Соляная кислота выпускается двух сортов: сорт А содержит не менее 30% хлористого водорода, а сорт Б – не менее 27.5 %.

Соляная кислота ядовита, поэтому обращаться с ней нужно очень осторожно.

Пары соляной кислоты при вдыхании сильно раздражают верхние дыхательные пути и органы.

При разбавлении соляной кислоты водой придерживаются тех же правил, что и при разбавлении серной кислоты.

Соляную кислоту хранят в герметически закрывающихся сосудах.

Азотная кислота HNO3 представляет собой бесцветную жидкость с удельным весом 1.52 при температуре 15`С.

Температура кипения 84`С. При кипении и на свету разлагается и выделяет двуокись азота, которая окрашивает кислоту в желтый, а затем в красный цвет.

Азотная кислота с водой смешивается в любых отношениях.

Концентрированная азотная кислота действует на многие металлы, кроме благородных.

Плавиковая кислота. Чистая плавиковая кислота представляет собой бесцветную жидкость с резким запахом. Эта кислота содержит не менее 40% фтористого водорода.

Пары фтористого водорода чрезвычайно ядовиты и едки. Поэтому при работе с плавиковой кислотой, как и с остальными кислотами, необходимо соблюдать меры предосторожности.

Оборудование для обезжиривания и травления металла

Ванны и установки для обезжиривания металла применяют различных конструкций. Выбор оборудования зависит от того, какими способами производится обезжиривание и какие габаритные размеры имеют обрабатываемые изделия.

Наиболее простым оборудованием являются металлические ванны разных размеров.

Металлическая ванна для химического и электрохимического обезжиривания состоит из сварного корпуса, парового змеевика, вентиляционных бортовых кожухов, штангодержателей, анодных и катодных шланг, кранового устройства для спуска обезжиривающего раствора в канализацию, кранового устройства для наполнения ванн проточной водой.

Паровой змеевик, расположенный внутри ванны служит для нагрева проточной воды и раствора в ванне до температуры 60-80`С.

Вентиляционные бортовые кожухи предназначены для удаления вредных газов, выделяемых при обезжиривании.

Количество кожухов приходится на каждую ванну, имеющую габаритные размеры: меньшие – 2, средние – от 4 до 6, большие – от 8 до 16.

Корпуса металлических ванн изготовляют длиной А от 600 до 6000 мм, высотой В от 700 до 1200 мм, шириной Б от 500 до 1000 мм.

Такие ванны имеют высоту Е от 840 до 1500 мм, ширину Д от 950 до 1520 мм, длину Г от 720 до 6200 мм.

Ванны указанных размеров имеют объем от 180 до 6300 л.

Обезжиривание поверхности изделий в органических растворителях осуществляют в специальных установках.

Ванны для травления бывают деревянными и металлическими.

Металлические ванны состоит из сварного стального корпуса, парового змеевика, вентиляционных бортовых кожухов, тангодержателей, анодных и катодных штанг.

Эти ванны изготовляются разных размеров. Металлические ванны облицованы внутри кислотоупорной футеровкой.

В сернокислых ваннах футеровка изготовляется из битума, а в солянокислых ваннах – из битума и винилопласта.

Посредством парового змеевика, расположенного внутри ванны, осуществляется нагрев травильного раствора.

Давление пара у вентилей парового змеевика 3ат.

Вентиляционные бортовые кожухи предназначены для удаления вредных газов, выделяемых при травлении.

Количество вентиляционных кожухов для каждой ванны точно определенное.

Для химического травления изделий применяют деревянные ванны, покрытые внутри резиной толщиной от 4 до 5 мм, а также ванны, выложенные внутри плитками из кислотоупорного бетона.

Травление поверхностей изделий из цветных металлов и их сплавов осуществляют в алюминиевых или керамических ваннах.

Ванны регулярно очищают от загрязнения.

Спуск отработанного травильного раствора в сточные трубопроводы без предварительной нейтрализации не допускается.

Нейтрализацию остатков растворов осуществляют непосредственно в ваннах добавлением гашеной извести, после отстоя жидкость спускают в канализацию, а остальное (шлам) выгребают лопатой и складывают в ящики.

Лужение металла

Лужением металла называется операция покрытия поверхности металлических изделий тонким слоем припоя, который представляет собой олово или сплав на оловянной основе.

Образующийся на поверхности изделий тонкий слой олова или сплава на оловянной основе принято называть полудой.

Лужение широко применяется в производстве различных изделий, используемых в радиотехнической, электротехнической, авиационной и других отраслях промышленности.

Лужению подвергаются изделия, идущие для приготовления и хранения пищи (кастрюли, ведра, тазы, молочные бидоны, консервные банки, пастеризационные аппараты, части сепараторов и т.д.).

Операция лужения является подготовительной операцией перед заливкой подшипников баббитом, перед паянием изделий и изготовлением изделий с фальцевыми швами. Основным условием лужения является покрытие поверхности изделий сплошным и непроницаемым слоем олова или сплава на оловянной основе.

Олово является хорошим защитником металла от коррозии, пока не поврежден слой олова, покрывающий поверхность изделий.

Луженые изделия хорошо выдерживают деформацию, изгибы и перегибы, не обнаруживая повреждений.

Лужение осуществляют в основном двумя методами: горячим и гальваническим.

Горячее лужение выполняют двумя способами: растиранием и погружением.

Эти два способа горячего лужения являются наиболее давними и широко применяются до сих пор.

Применение горячего лужения позволяет обходиться без электрического тока, специальных ванн и растворов-электролитов.

Одним из существенных недостатков горячего лужения является трудность, а иногда и невозможность получить в процессе лужения равномерный беспористый слой металла.

Толщина слоя горячего лужения часто колеблется в очень больших пределах.

Изделия неправильной формы с глубокими рельефами покрываются неравномерно, разница в толщине покрытия отдельных участков поверхности бывает значительной. Вследствие этого количество олова, расходуемого на покрытие различного рода изделий бывает очень велико, кроме того, получается значительный угар олова.

К недостаткам горячего лужения относятся также трудность удаления посторонних примесей, загрязняющих расплавленный металл.

Вследствие неравномерной толщины слоя, образования утолщений и наплывов на отдельных участках поверхности, лужение горячим способом изделий с узкими отверстиями, с мелкой нарезкой и т.д. весьма затруднительно, а часто совершенно невозможно.

Горячее лужение широко применяется при изготовлении изделий с внутренними закатанными швами (ведра, тазы, бидоны и т.п.). При этом расплавленное олово заполняя отверстия и закаты швов выполняет роль паяния и гарантирует полную герметичность изделий.

Гальваническое лужение осуществляется двумя способами: в кислых электролитах и щелочных электролитах.

Гальваническое лужение применяют широко, так как оно обеспечивает высокую прочность сцепления покрытия с основным металлом или сплавом на оловянной основе, позволяет получать равномерную и любую заданную толщину покрытия даже на изделиях сложной формы, а также малую пористость покрытия.

Большой рассеивающей и кроющей способностью обладает щелочнные элекролиты, которые применяются для покрытия изделий сложной формы.

Гальваническое лужение по сравнению с горячи лужением является более экономичным по расходу олова или сплавов на оловянной основе.

К недостаткам гальванического лужения относятся: применение ванн специального устройства и более высокая квалификация рабочих. Кроме того, к недостаткам гальванического лужения в щелочных электролитах следует отнести сложность приготовления электролита и неустойчивость состава раствора, что требует постоянного наблюдения и ухода за ванной и анодами.

Материалы для лужения

Процесс лужения связан с использованием веществ для травления, флюсов и полуды. В качестве веществ для травления металлических поверхностей перед лужением применяют разбавленную серную или соляную кислоту, а также купоросное масло.

Чаще всего при травлении используются 15-30%-ным раствором водным раствором серной кислоты.

К наиболее распространенным флюсам, предохраняющим облуживаемую поверхность от окисления, относятся хлористый цинк, нашатырь и канифоль (при паянии меди и латуни).

Хлористый цинк получают, растворяя в соляной кислоте мелкие кусочки цинка.

Для этого в стеклянную или керамическую наливают полстакана кислоты и бросают с перерывами (чтобы не вызвать бурной реакции) кусочки цинка.

Как только цинк перестанет растворяться, флюс готов к употреблению.

Травление серной кислоты сопровождается выделением большого количества вредных газов. Это надо учитывать при выборе места приготовления флюса.

Хлористый аммоний (также называют нашатырем) представляет собой твердое вещество белого цвета, волокнистого строения.

Хлористый аммоний легко растворяется в воде, а при нагревании испаряется, образуя беловатые ядовитые пары.

Хлористый аммоний используют при лужении и паянии в качестве флюсового вещества, так как он хорошо очищает поверхности деталей и изделий от окислов.

Едкий натр, или гидрат окиси натрия, представляет собой кристаллическое вещество.

Легко растворяется в воде, при этом происходит сильное нагревание.

Едкий натр растворяет жиры, на кожу человека действует разрушающим образом, а потому при работе с ним следует соблюдать меры предосторожности.

Двухлористое олово – кристаллическое вещество, легко растворимое в воде и окисляющееся на воздухе.

Двухлористое олово является основным компонентом ванн при электрохимическом лужении.

Полудой служат чистое олово (при лужении посуды) или сплав олова со свинцом.

Подготовка поверхности перед лужением

Чем лучше буде подготовлена поверхность к лужению, тем плотнее и прочнее ляжет покрытие на поверхность изделия.

Порядок и характер подготовки изделий зависит от требований, предъявляемых к изделиям, и от метода нанесения полуды.

Обслуживаемая поверхность должна быть очищена самым тщательном образом от грязи, масла, ржавчины и пленок окислов.

Очищают ее механическим способом – напильником, шабером, стальной щеткой, наждачным полотном, или химическим способом, протравливая разбавленной кислотой, а затем промывая водой.

Обработанную таким путем поверхность посыпают чистым песком, протирают паклей, еще раз промывают, после чего прикасаться к облуживаемой поверхности пальцами уже нельзя.

Инструменты и посуда для лужения

Изделия при лужении измеряют при помощи металлического складного метра, стальной масштабной линейки, штангенциркуля и др.

Лудильные клещи применяют для поддержания изделий. Они весьма удобны для работы и благодаря изогнутым дугообразным щекам обеспечивают беспрепятственный доступ олова к поверхности облуживаемого изделия.

Шаберы применяют для очистки поверхности изделий от посторонних веществ соскабливанием.

Плоские поверхности обрабатывают плоским шабером, снимая слои металла при движении вперед, а вогнутые поверхности – изогнутым шабером, перемещая шабер вбок слева направо. Кроме этих, используют шаберы с загнутым концом для снятия тонкого слоя металла в углах, где трудно работать плоским шабером.

Кисти. Волосяные кисти применяют для смазки изделий кислотой и удаления с них посторонних веществ.

Кисти оберегают от загрязнений и промывают в керосине, так как при пользовании загрязненной кистью нельзя получить чистую поверхность изделия.

Паяльные лампы применяют для нагревания изделий и припоев.

Наиболее распространенными паяльными лампами являются керосиновые.

Они характеризуются емкостью резервуара, длиной пламени и давлением, которое создается в резервуаре при подготовке паяльной лампы к работе.

Применяют керосиновые лампы емкостью 0.5, 1, 1.5, 2, 3, 4 л.

Внимание! Это ознакомительный фрагмент книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента ООО "ЛитРес".

Пайка позволяет соединять в единое изделие элементы из разных металлов и сплавов, обладающих различными физико-механическими свойствами. Например, методом пайки можно соединять малоуглеродистые и высокоуглеродистые стали, чугунные детали со стальными, твердый сплав со сталью и т. д. Особо следует отметить возможность соединения путем пайки деталей из алюминия и его сплавов. Широко применяется метод напайки пластинок твердого сплава к державкам при изготовлении режущего инструмента.

В условиях домашней мастерской пайка – самый доступный вид образования неподвижных неразъемных соединений. При пайке в зазор между нагретыми деталями вводится расплавленный присадочный металл, называемый припоем. Припой, имеющий более низкую температуру плавления, чем соединяемые металлы, смачивая поверхность деталей, соединяет их при охлаждении и затвердевании. В процессе пайки основной металл и припой, взаимно растворяясь друг в друге, обеспечивают высокую прочность соединения, одинаковую (при качественном выполнении пайки) с прочностью целого сечения основной детали.

Процесс пайки отличается от сварки тем, что кромки соединяемых деталей не расплавляются, а только нагреваются до температуры плавления припоя.

Для осуществления паяных соединений необходимы: паяльник электрический или с непрямым подогревом, паяльная лампа, припой, флюс.

Мощность электрического паяльника зависит от размера соединяемых деталей, от материала, из которого они изготовлены. Так, для паяния медных изделий небольших размеров (например, проволоки сечением в несколько квадратных миллиметров) достаточно мощности 50–100 Вт, при пайке электронных приборов мощность электрического паяльника должна быть не более 40 Вт, а напряжение питания – не более 40 В, для пайки крупных деталей необходима мощность в несколько сот ватт.

Паяльная лампа используется для нагрева паяльника с непрямым подогревом и для прогрева паяемых деталей (при большой площади пайки). Вместо паяльной лампы можно использовать газовую горелку – она более производительна и надежна в эксплуатации.

В качестве припоя чаще всего используются оловянно-свинцовые сплавы, имеющие температуру плавления 180–280 °C. Если к таким припоям добавить висмут, галлий, кадмий, то получаются легкоплавкие припои с температурой плавления 70–150 °C. Эти припои актуальны для пайки полупроводниковых приборов. При металлокерамической пайке в качестве припоя используется порошковая смесь, состоящая из тугоплавкой основы (наполнителя) и легкоплавких компонентов, которые обеспечивают смачивание частиц наполнителя и соединяемых поверхностей. В продаже имеются и сплавы в виде брусков или проволоки, которые представляют собой симбиоз припоя и флюса.

Использование в процессе пайки флюсов основано на их способности предотвращать образование на поверхностях деталей окисной пленки при нагреве. Они также снижают поверхностное натяжение припоя. Флюсы должны отвечать следующим требованиям: сохранение стабильного химического состава и активности в интервале температур плавления припоя (то есть флюс под действием этих температур не должен разлагаться на составляющие), отсутствие химического взаимодействия с паяемым металлом и припоем, легкость удаления продуктов взаимодействия флюса и окисной пленки (промывкой или испарением), высокая жидкотекучесть. Для пайки различных металлов характерно использование определенного флюса: при пайке деталей из латуни, серебра, меди и железа в качестве флюса применяется хлористый цинк; свинец и олово требуют стеариновой кислоты; для цинка подходит серная кислота. Но существуют и так называемые универсальные припои: канифоль и паяльная кислота.

Детали, которые предполагается соединить методом пайки, следует должным образом подготовить: очистить от грязи, удалить напильником или наждачной бумагой окисную пленку, образующуюся на металле под воздействием воздуха, протравить кислотой (стальные – соляной, из меди и ее сплавов – серной, сплавы с большим содержанием никеля – азотной), обезжирить тампоном, смоченным в бензине, и только после этого приступать непосредственно к процессу пайки.

Нужно нагреть паяльник. Нагрев проверяется погружением носика паяльника в нашатырь (твердый): если нашатырь шипит и от него идет сизый дым, то нагрев паяльника достаточный; ни в коем случае нельзя перегревать паяльник. Носик его при необходимости следует очистить напильником от окалины, образовавшейся в процессе нагревания, погрузить рабочую часть паяльника во флюс, а затем в припой так, чтобы на носике паяльника остались капельки расплавленного припоя, прогреть паяльником поверхности деталей и облудить их (то есть покрыть тонким слоем расплавленного припоя). После того как детали немного остынут, плотно соединить их между собой; снова прогреть место пайки паяльником и заполнить зазор между кромками деталей расплавленным припоем.

Если необходимо соединить методом пайки большие поверхности, то поступают несколько иначе: после прогревания и облуживания места спайки зазор между поверхностями деталей заполняют кусочками холодного припоя и одновременно прогревают детали и расплавляют припой. В этом случае рекомендуется периодически обрабатывать носик паяльника и место пайки флюсом.

О том, что паяльник перегревать недопустимо, уже говорилось, а почему? Дело в том, что перегретый паяльник плохо удерживает капельки расплавленного припоя, но не это главное. При очень высоких температурах припой может окислиться и соединение получится непрочным. А при пайке полупроводниковых приборов перегрев паяльника может привести к их электрическому пробою, и приборы выйдут из строя (именно поэтому при пайке электронных приборов используют мягкие припои и воздействие разогретого паяльника на место пайки ограничивают 3–5 секундами).

Когда место спайки полностью остынет, его очищают от остатков флюса. Если шов получился выпуклым, то его можно выровнять (например, напильником).

Качество пайки проверяют: внешним осмотром – на предмет обнаружения непропаянных мест, изгибом в месте спая – не допускается образование трещин (проверка на прочность); паяные сосуды проверяют на герметичность заполнением водой – течи не должно быть.

Существуют способы пайки, при которых используется твердый припой – медно-цинковые пластины толщиной 0,5–0,7 мм, или прутки диаметром 1–1,2 мм, или смесь опилок медно-цинкового припоя с бурой в соотношении 1: 2. Паяльник в этом случае не используется.

Первые два способа основаны на применении пластинчатого или пруткового припоя. Подготовка деталей к паянию твердым припоем аналогична подготовке к пайке с использованием мягкого припоя.

Далее на место спайки накладываются кусочки припоя и спаиваемые детали вместе с припоем скручиваются тонкой вязальной стальной или нихромовой проволокой (диаметром 0,5–0,6 мм). Место паяния посыпается бурой и нагревается до ее плавления. Если припой не расплавился, то место паяния посыпается бурой вторично (без удаления первой порции) и нагревается до расплавления припоя, который заполняет зазор между спаиваемыми деталями.

При втором способе место паяния нагревают докрасна (без кусочков припоя), посыпают бурой и подводят к нему пруток припоя (продолжая нагрев): припой при этом плавится и заполняет щель между деталями.

Еще один способ пайки основан на применении в качестве припоя порошкообразной смеси: подготовленные детали нагревают в месте пайки докрасна (без припоя), посыпают смесью буры и опилок припоя и продолжают нагревать до плавления смеси.

После паяния любым из трех предложенных способов спаянные детали охлаждают и очищают место пайки от остатков буры, припоя и вязальной проволоки. Проверку качества паяния производят визуально: для обнаружения непропаянных мест и прочности слегка постукивают спаянными деталями по массивному предмету – при некачественной пайке в шве образуется излом.

Разновидности паяных соединений показаны на рис. 53.

Рис. 53. Конструкции паяных соединений: а – внахлестку; б – с двумя нахлестками; в – встык; г – косым швом; д – встык с двумя нахлестками; е – в тавр.

В большинстве случаев детали сначала подвергают лужению, что облегчает последующую пайку. Схема процесса лужения показана на рис. 54.


Рис. 54. Схема лужения паяльником: 1 – паяльник; 2 – основной металл; 3 – зона сплавления припоя с основным металлом; 4 – флюс; 5 – поверхностный слой флюса; 6 – растворенный окисел; 7 – пары флюса; 8 – припой.

Однако лужение можно использовать не только как один из этапов паяния, но и как самостоятельную операцию, когда вся поверхность металлического изделия покрывается тонким слоем олова для придания ему декоративных и дополнительных эксплуатационных качеств.

В этом случае покрывающий материал носит название не припоя, а полуды. Чаще всего лудят оловом, но в целях экономии в полуду можно добавить свинец (не более трех частей свинца на пять частей олова). Добавление в полуду 5 % висмута или никеля придает луженым поверхностям красивый блеск. А введение в полуду такого же количества железа делает ее более прочной.

Кухонную утварь (посуду) можно лудить только чисто оловянной полудой, добавление в нее различных металлов опасно для здоровья!

Полуда хорошо и прочно ложится только на идеально чистые и обезжиренные поверхности, поэтому изделие перед лужением необходимо тщательно очистить механическим способом (напильником, шабером, шлифовальной шкуркой до равномерного металлического блеска) либо химическим – подержать изделие в кипящем 10 %-ном растворе каустической соды в течение 1–2 минут, а затем поверхность протравить 25 %-ным раствором соляной кислоты. В конце очистки (независимо от способа) поверхности промывают водой и сушат.

Сам процесс лужения можно осуществлять методом растирания, погружения или гальваническим путем (при таком лужении необходимо использование специального оборудования, поэтому гальваническое лужение на дому, как правило, не осуществляется).

Метод растирания заключается в следующем: подготовленную поверхность покрывают раствором хлористого цинка, посыпают порошком нашатыря и нагревают до температуры плавления олова.

Затем следует приложить оловянный пруток к поверхности изделия, распределить олово по поверхности и растереть чистой паклей до образования равномерного слоя. Необлуженные места пролудить повторно. Работу следует выполнять в брезентовых рукавицах.

При методе лужения погружением олово расплавляют в тигле, подготовленную деталь захватывают щипцами или плоскогубцами, погружают на 1 минуту в раствор хлористого цинка, а затем на 3–5 минут в расплавленное олово. Извлекают деталь из олова и сильным встряхиванием удаляют излишки полуды. После лужения изделие следует охладить и промыть водой.

Из книги: Коршевер Н. Г. Работы по металлу